{"title":"DE-NOx/CO Performance According to Ag Loading Amount and Support Type of H2-SCR","authors":"Choong-kil Seo","doi":"10.1007/s12239-024-00088-6","DOIUrl":null,"url":null,"abstract":"<p>This study aims to investigate the NOx/CO reduction characteristics of harmful gases according to the loading amount of active Ag, which plays the most important role in H<sub>2</sub>-SCR, and the type of support. H<sub>2</sub>-SCR with Ag loaded on support of TiO<sub>2</sub> was reduced to Ag<sup>+</sup> at about 140 °C in AgO oxide, and H<sub>2</sub>-SCR with Ag loaded on support of Al<sub>2</sub>O<sub>3</sub> was reduced to Ag clusters (Ag<sub>n</sub><sup>δ+</sup>) at about 260 °C in AgO oxide. Because it is more unstable than AgO oxide, it promoted the chemical reaction of Ag. 0.5Ag/TiO<sub>2</sub> H<sub>2</sub>-SCR showed the highest NOx conversion rate of about 18% at 200 °C, and the window width was also widened. 2Ag/Al<sub>2</sub>O<sub>3</sub> H<sub>2</sub>-SCR improved the low-temperature activity of the catalyst due to its large specific surface area and the loading amount of active catalyst Ag. Although the harmful gas reduction performance has decreased significantly compared to the active material Pt used in the H<sub>2</sub>-SCR, research on active materials considering the performance the improvement and economic feasibility must be continued.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"95 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00088-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to investigate the NOx/CO reduction characteristics of harmful gases according to the loading amount of active Ag, which plays the most important role in H2-SCR, and the type of support. H2-SCR with Ag loaded on support of TiO2 was reduced to Ag+ at about 140 °C in AgO oxide, and H2-SCR with Ag loaded on support of Al2O3 was reduced to Ag clusters (Agnδ+) at about 260 °C in AgO oxide. Because it is more unstable than AgO oxide, it promoted the chemical reaction of Ag. 0.5Ag/TiO2 H2-SCR showed the highest NOx conversion rate of about 18% at 200 °C, and the window width was also widened. 2Ag/Al2O3 H2-SCR improved the low-temperature activity of the catalyst due to its large specific surface area and the loading amount of active catalyst Ag. Although the harmful gas reduction performance has decreased significantly compared to the active material Pt used in the H2-SCR, research on active materials considering the performance the improvement and economic feasibility must be continued.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.