Research on Non-isothermal Numerical Simulation Algorithm for Tire Rubber Mixing Based on Multiphase Flow Decoupling Principle

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Guolin Wang, Jingshixiong Wang, Haichao Zhou, Chen Liang
{"title":"Research on Non-isothermal Numerical Simulation Algorithm for Tire Rubber Mixing Based on Multiphase Flow Decoupling Principle","authors":"Guolin Wang, Jingshixiong Wang, Haichao Zhou, Chen Liang","doi":"10.1007/s12239-024-00061-3","DOIUrl":null,"url":null,"abstract":"<p>Rubber mixing plays a very important role in the tire manufacturing process, and the rubber mixing effect affects the quality of the finished tire. Numerical simulation methods are often used to investigate the optimal rubber mixing parameters. To solve the problem of rubber mixing numerical simulation calculations in non-isothermal partial filling conditions when the calculation is difficult, this paper is based on the principle of decoupling to design an algorithm to calculate the rubber temperature in the rubber mixing process. The rubber viscosity and shear rate are processed using the Bird–Carreau model, and the rubber temperature and viscosity are decoupled using the Arrhenius-Law model. Define the heat generation rate of rubber based on the rubber viscosity and shear rate obtained from transient numerical simulation, and obtain the temperature value of each rubber unit. Numerical simulation calculations of rubber compounding under non-isothermal partial filling conditions are realized. To verify the feasibility of the algorithm, the designed algorithm is applied to study the effect of rubber mixing machine speed on the rubber mixing effect. Finally, comparing the numerical simulation results with the experimental results, the effectiveness of this algorithm is proven.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"32 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00061-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rubber mixing plays a very important role in the tire manufacturing process, and the rubber mixing effect affects the quality of the finished tire. Numerical simulation methods are often used to investigate the optimal rubber mixing parameters. To solve the problem of rubber mixing numerical simulation calculations in non-isothermal partial filling conditions when the calculation is difficult, this paper is based on the principle of decoupling to design an algorithm to calculate the rubber temperature in the rubber mixing process. The rubber viscosity and shear rate are processed using the Bird–Carreau model, and the rubber temperature and viscosity are decoupled using the Arrhenius-Law model. Define the heat generation rate of rubber based on the rubber viscosity and shear rate obtained from transient numerical simulation, and obtain the temperature value of each rubber unit. Numerical simulation calculations of rubber compounding under non-isothermal partial filling conditions are realized. To verify the feasibility of the algorithm, the designed algorithm is applied to study the effect of rubber mixing machine speed on the rubber mixing effect. Finally, comparing the numerical simulation results with the experimental results, the effectiveness of this algorithm is proven.

Abstract Image

基于多相流解耦原理的轮胎橡胶混合非等温数值模拟算法研究
炼胶在轮胎制造过程中起着非常重要的作用,炼胶效果影响着成品轮胎的质量。通常采用数值模拟方法来研究最佳炼胶参数。为了解决在非等温部分充填条件下橡胶混炼数值模拟计算时计算困难的问题,本文基于解耦原理设计了一种算法来计算橡胶混炼过程中的橡胶温度。使用 Bird-Carreau 模型处理橡胶粘度和剪切速率,使用 Arrhenius-Law 模型解耦橡胶温度和粘度。根据瞬态数值模拟获得的橡胶粘度和剪切速率定义橡胶的发热率,并获得每个橡胶单元的温度值。实现非等温部分填充条件下橡胶混炼的数值模拟计算。为了验证算法的可行性,应用所设计的算法研究了炼胶机速度对炼胶效果的影响。最后,将数值模拟结果与实验结果进行比较,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信