Lorran de Sousa Arantes, Adriano Reis Prazeres Mascarenhas, Ianca Oliveira Borges, Rafael Carvalho do Lago, Carlos Henrique da Silva, Murilo Daniel de Mello Innocentini, Lourival Marin Mendes, Gustavo Henrique Denzin Tonoli
{"title":"Use of carbonated cellulose micro/nanofibrils in the coating of sack kraft paper","authors":"Lorran de Sousa Arantes, Adriano Reis Prazeres Mascarenhas, Ianca Oliveira Borges, Rafael Carvalho do Lago, Carlos Henrique da Silva, Murilo Daniel de Mello Innocentini, Lourival Marin Mendes, Gustavo Henrique Denzin Tonoli","doi":"10.1007/s00107-024-02068-0","DOIUrl":null,"url":null,"abstract":"<div><p>Coating paper with cellulose micro/nanofibrils (CMF/CNF) can improve the performance of paper packaging. However, the cost of the process is high due to the significant energy consumption during the CMF/CNF production process, which can be reduced through pre-treatment of cellulosic fibers. The objective of this work was, therefore, to evaluate the performance of CMF/CNF subjected to accelerated carbonation with different concentrations of calcium hydroxide (5% and 10% m/m) as a paper coating for packaging production in terms of spreading properties of adhesives, air permeability, and water absorption. The CMF/CNF coating was able to fill pores contained in the papers, with the treatment with 10% carbonation (CMF/CNF 10%) being the one that adhered best to the surface. There was a reduction in surface roughness from 1.35 ± 0.53 μm (uncoated paper) to 0.72 ± 0.21 μm (CMF/CNF 10%). Similarly, air permeability in the coated treatments was decreased, indicating good barrier properties and possible CO<sub>2</sub> absorption activity in the carbonated samples. Coated papers showed greater spreading of water, PVA, and PVOH. On the other hand, the Cobb value dropped from 41.55 ± 3.83 g m<sup>2</sup> (uncoated paper) to 26.26 ± 2.36 g m<sup>2</sup> (CMF/CNF 10%). CMF/CNF subjected to pre-treatment with accelerated carbonation have the potential for use as a coating material, being recommended for applications in food packaging and those that will be subjected to gluing/coating processes with other materials.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"82 4","pages":"1049 - 1059"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-024-02068-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Coating paper with cellulose micro/nanofibrils (CMF/CNF) can improve the performance of paper packaging. However, the cost of the process is high due to the significant energy consumption during the CMF/CNF production process, which can be reduced through pre-treatment of cellulosic fibers. The objective of this work was, therefore, to evaluate the performance of CMF/CNF subjected to accelerated carbonation with different concentrations of calcium hydroxide (5% and 10% m/m) as a paper coating for packaging production in terms of spreading properties of adhesives, air permeability, and water absorption. The CMF/CNF coating was able to fill pores contained in the papers, with the treatment with 10% carbonation (CMF/CNF 10%) being the one that adhered best to the surface. There was a reduction in surface roughness from 1.35 ± 0.53 μm (uncoated paper) to 0.72 ± 0.21 μm (CMF/CNF 10%). Similarly, air permeability in the coated treatments was decreased, indicating good barrier properties and possible CO2 absorption activity in the carbonated samples. Coated papers showed greater spreading of water, PVA, and PVOH. On the other hand, the Cobb value dropped from 41.55 ± 3.83 g m2 (uncoated paper) to 26.26 ± 2.36 g m2 (CMF/CNF 10%). CMF/CNF subjected to pre-treatment with accelerated carbonation have the potential for use as a coating material, being recommended for applications in food packaging and those that will be subjected to gluing/coating processes with other materials.
期刊介绍:
European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets.
European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.