{"title":"Kinetics of CO2 hydrogenation to methanol over CuO/ZnO/ZrO2 catalyst: Comparison of the differential and integral methods of kinetic analysis","authors":"Saman Khawaja, Muhammad Rashid Usman","doi":"10.1002/kin.21720","DOIUrl":null,"url":null,"abstract":"<p>The experimental data over CuO/ZnO/ZrO<sub>2</sub> catalyst for a wide range of operating conditions were used to develop the kinetics of the reaction CO<sub>2</sub> hydrogenation to methanol. Three kinetic models such as the power law model, the Graaf kinetic model, and the Park kinetic model were tested against the experimental data. Both the mechanistic models have been developed based on the Langmuir-Hinshelwood-Hougen-Watson approach and are specific only to the methanol synthesis from CO/CO<sub>2</sub> hydrogenation. In an attempt to reduce the number of parameters in the two models, the abridged forms of these models were also tried. Overall, 25 kinetic rate equations were tested and the best-fit kinetic rate expression with optimized parameters was worked out. Both the integral and differential methods of kinetic analysis were employed and their efficacy in finding the best-fit expression was compared. The MATLAB built-in function <i>fminsearch</i> was employed to perform the regression of the data. The Graaf model in its parent form, but with the new optimized values of the parameters, was found to be the best-fit rate model. The Graaf kinetics, with re-estimated parameters, could be helpful in designing and simulating a methanol synthesis reactor operating on CO<sub>2</sub> and H<sub>2</sub> feed and utilizing a CuO/ZnO/ZrO<sub>2</sub> catalyst.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"56 8","pages":"469-481"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21720","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The experimental data over CuO/ZnO/ZrO2 catalyst for a wide range of operating conditions were used to develop the kinetics of the reaction CO2 hydrogenation to methanol. Three kinetic models such as the power law model, the Graaf kinetic model, and the Park kinetic model were tested against the experimental data. Both the mechanistic models have been developed based on the Langmuir-Hinshelwood-Hougen-Watson approach and are specific only to the methanol synthesis from CO/CO2 hydrogenation. In an attempt to reduce the number of parameters in the two models, the abridged forms of these models were also tried. Overall, 25 kinetic rate equations were tested and the best-fit kinetic rate expression with optimized parameters was worked out. Both the integral and differential methods of kinetic analysis were employed and their efficacy in finding the best-fit expression was compared. The MATLAB built-in function fminsearch was employed to perform the regression of the data. The Graaf model in its parent form, but with the new optimized values of the parameters, was found to be the best-fit rate model. The Graaf kinetics, with re-estimated parameters, could be helpful in designing and simulating a methanol synthesis reactor operating on CO2 and H2 feed and utilizing a CuO/ZnO/ZrO2 catalyst.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.