Urease stabilization in urea–urease–H+ system and its influence on the clock reaction dynamics

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL
Dan Yang, Hua Zhang, Fengyi Cao, Sijia Chang, Guihao Tan, Lin Ji
{"title":"Urease stabilization in urea–urease–H+ system and its influence on the clock reaction dynamics","authors":"Dan Yang,&nbsp;Hua Zhang,&nbsp;Fengyi Cao,&nbsp;Sijia Chang,&nbsp;Guihao Tan,&nbsp;Lin Ji","doi":"10.1002/kin.21725","DOIUrl":null,"url":null,"abstract":"<p>The inherent autocatalytic kinetics of the urea–urease–H<sup>+</sup> system positions it as a promising candidate for the design of dynamic materials with time-domain programmable functions. Nevertheless, the stability of the enzyme can markedly influence the temporal evolution dynamics of the system and curtail its widespread applicability. This work employs several kinds of enzyme stabilization methods, including chemical cross-linking, physical coating, solvent stabilization, and solvent-physical coating co-modification, to systematically explore the impact of enzyme stabilization on clock reaction dynamics. Extensive experimental tests and analysis indicate that solvent and chemical cross-linking stabilization methods can better preserve clock dynamics with sensitive switching ability. Nevertheless, due to significant pH changes in the reacting system, the reusability of the enzyme is better retained in the physical coating and solvent-physical coating co-modification methods.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21725","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The inherent autocatalytic kinetics of the urea–urease–H+ system positions it as a promising candidate for the design of dynamic materials with time-domain programmable functions. Nevertheless, the stability of the enzyme can markedly influence the temporal evolution dynamics of the system and curtail its widespread applicability. This work employs several kinds of enzyme stabilization methods, including chemical cross-linking, physical coating, solvent stabilization, and solvent-physical coating co-modification, to systematically explore the impact of enzyme stabilization on clock reaction dynamics. Extensive experimental tests and analysis indicate that solvent and chemical cross-linking stabilization methods can better preserve clock dynamics with sensitive switching ability. Nevertheless, due to significant pH changes in the reacting system, the reusability of the enzyme is better retained in the physical coating and solvent-physical coating co-modification methods.

尿素-尿素酶-H+系统中的尿素酶稳定及其对时钟反应动力学的影响
尿素-尿素酶-H+ 系统固有的自动催化动力学使其成为设计具有时域可编程功能的动态材料的理想候选材料。然而,酶的稳定性会明显影响系统的时间演化动力学,从而限制其广泛应用。本研究采用化学交联、物理包覆、溶剂稳定和溶剂-物理包覆共修饰等多种酶稳定方法,系统地探讨了酶稳定对时钟反应动力学的影响。大量的实验测试和分析表明,溶剂稳定法和化学交联稳定法能更好地保持时钟动态,并具有灵敏的切换能力。然而,由于反应体系中的 pH 值会发生显著变化,物理涂层法和溶剂-物理涂层联合改性法能更好地保持酶的可重复使用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信