UV photolysis of oxalyl chloride: ClCO radical decomposition and direct Cl 2 ${\rm Cl}_2 {\rm }$ formation pathways

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL
Michael Stuhr, Sebastian Hesse, Nancy Faßheber, Marcel Wohler, Mithun Pal, Yasuyuki Sakai, Patrick Hemberger, Gernot Friedrichs
{"title":"UV photolysis of oxalyl chloride: ClCO radical decomposition and direct \n \n \n \n Cl\n 2\n \n \n \n ${\\rm Cl}_2 {\\rm }$\n formation pathways","authors":"Michael Stuhr,&nbsp;Sebastian Hesse,&nbsp;Nancy Faßheber,&nbsp;Marcel Wohler,&nbsp;Mithun Pal,&nbsp;Yasuyuki Sakai,&nbsp;Patrick Hemberger,&nbsp;Gernot Friedrichs","doi":"10.1002/kin.21723","DOIUrl":null,"url":null,"abstract":"<p>Oxalyl chloride, <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math>, is widely used as a photolytic source of Cl atoms in reaction kinetics studies. <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math> photolysis is typically assumed to produce Cl atoms with an overall yield of 2 via three-body dissociation, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <mi>h</mi>\n <mi>ν</mi>\n <mo>→</mo>\n <mtext>Cl</mtext>\n <mo>+</mo>\n <mtext>CO</mtext>\n <mo>+</mo>\n <msup>\n <mtext>ClCO</mtext>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation>$\\text{(ClCO)}_2 + h\\nu \\rightarrow \\text{Cl} + \\text{CO} + \\text{ClCO}^*$</annotation>\n </semantics></math>, followed by fast subsequent ClCO unimolecular decomposition of either the energetically excited <span></span><math>\n <semantics>\n <msup>\n <mi>ClCO</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm ClCO}^*$</annotation>\n </semantics></math> fragment, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>ClCO</mtext>\n <mo>∗</mo>\n </msup>\n <mo>→</mo>\n <mtext>Cl</mtext>\n <mo>+</mo>\n <mtext>CO</mtext>\n </mrow>\n <annotation>$\\text{ClCO}^* \\rightarrow \\text{Cl} + \\text{CO}$</annotation>\n </semantics></math>, or the thermalized ClCO radical, <span></span><math>\n <semantics>\n <mrow>\n <mtext>ClCO</mtext>\n <mo>+</mo>\n <mi>M</mi>\n <mo>→</mo>\n <mtext>Cl</mtext>\n <mo>+</mo>\n <mtext>CO</mtext>\n <mo>+</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$\\text{ClCO} + \\text{M} \\rightarrow \\text{Cl} + \\text{CO} + \\text{M}$</annotation>\n </semantics></math>. However, a study by Huang et al. (J. Phys. Chem. A 121 (2017) 2888–2895) found that UV photolysis of <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mn>248</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$248\\ {\\rm nm}$</annotation>\n </semantics></math> directly yields <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> with a photolysis quantum yield of <span></span><math>\n <semantics>\n <mrow>\n <mi>ϕ</mi>\n <mo>(</mo>\n <msub>\n <mtext>Cl</mtext>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n <mo>&gt;</mo>\n <mn>14</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$\\phi (\\text{Cl}_2) &amp;gt; 14\\%$</annotation>\n </semantics></math>. This new product pathway may complicate the use of <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math> as a clean source of Cl atoms and challenges the previously accepted photodissociation scheme. The purpose of the present work was 2-fold. Firstly, the unimolecular decomposition of <span></span><math>\n <semantics>\n <msup>\n <mi>ClCO</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm ClCO}^*$</annotation>\n </semantics></math> and ClCO radicals has been investigated in <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math>/<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>H</mi>\n <mn>6</mn>\n </msub>\n <mrow>\n <mo>/</mo>\n <mi>Ar</mi>\n </mrow>\n </mrow>\n <annotation>$\\text{C}_{2}\\text{H}_6{\\rm {/Ar}}$</annotation>\n </semantics></math> gas mixtures after UV photolysis at <span></span><math>\n <semantics>\n <mrow>\n <mn>266</mn>\n <mspace></mspace>\n <mrow></mrow>\n </mrow>\n <annotation>$266\\ {\\rm }$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mn>355</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$355\\ {\\rm nm}$</annotation>\n </semantics></math>. Cl atoms were captured by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>2</mn>\n </msub>\n <msub>\n <mi>H</mi>\n <mn>6</mn>\n </msub>\n </mrow>\n <annotation>$\\text{C}_{2}\\text{H}_6$</annotation>\n </semantics></math> added in excess such that concentration-time profiles of HCl measured by means of mid-infrared frequency modulation spectroscopy reflect the temporally separated Cl formation pathways. The low-pressure thermal ClCO decomposition rate constant was determined to be <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mn>1.79</mn>\n <mo>±</mo>\n <mn>0.17</mn>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>14</mn>\n </mrow>\n </msup>\n <mspace></mspace>\n <msup>\n <mtext>cm</mtext>\n <mn>3</mn>\n </msup>\n <mspace></mspace>\n <msup>\n <mtext>molecule</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mspace></mspace>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$k = (1.79 \\pm 0.17)\\times 10^{-14}\\ \\text{cm}^{3}\\ \\text{molecule}^{-1}\\ \\text{s}^{-1}$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mn>295</mn>\n <mspace></mspace>\n <mi>K</mi>\n </mrow>\n <annotation>$295\\ {\\rm K}$</annotation>\n </semantics></math>, which is in very good agreement with previously reported literature values. Secondly, the photolysis quantum yield of direct <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> formation from <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math> photofragmentation was studied with time-of-flight mass spectrometry using a photoelectron photoion coincidence setup. Calibrated <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> concentration-time profiles were recorded and analyzed using kinetic simulations accounting for both direct and secondary formation of <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> from photolysis and reactions involving Cl, ClCO, and <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math>, respectively. Direct <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> formation could be confirmed, where wavelength-dependent quantum yields of <span></span><math>\n <semantics>\n <mrow>\n <mi>ϕ</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Cl</mtext>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mn>5.0</mn>\n <mo>±</mo>\n <mn>1.6</mn>\n <mo>)</mo>\n </mrow>\n <mo>%</mo>\n </mrow>\n <annotation>$\\phi (\\text{Cl}_2) = (5.0 \\pm 1.6)\\%$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>10.0</mn>\n <mo>±</mo>\n <mn>3.3</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(10.0 \\pm 3.3)\\%$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>5.6</mn>\n <mo>±</mo>\n <mn>2.0</mn>\n <mo>)</mo>\n <mo>%</mo>\n </mrow>\n <annotation>$(5.6 \\pm 2.0)\\%$</annotation>\n </semantics></math> at <span></span><math>\n <semantics>\n <mrow>\n <mn>213</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$213\\ {\\rm nm}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>266</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$266\\ {\\rm nm}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mn>355</mn>\n <mspace></mspace>\n <mi>nm</mi>\n </mrow>\n <annotation>$355\\ {\\rm nm}$</annotation>\n </semantics></math> were determined. Complementary quantum-chemical calculations of the potential energy diagram for ground-state photodissociation reveal a low-lying energy barrier for the formation of phosgene, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <mi>CO</mi>\n </mrow>\n <annotation>${\\rm Cl}_2{\\rm CO}$</annotation>\n </semantics></math>. We suggest that subsequent <span></span><math>\n <semantics>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\rm Cl}_2$</annotation>\n </semantics></math> and Cl formation from energetically excited <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cl</mi>\n <mn>2</mn>\n </msub>\n <mi>CO</mi>\n </mrow>\n <annotation>${\\rm Cl}_2{\\rm CO}$</annotation>\n </semantics></math> may actually play a role for the overall photodissociation of <span></span><math>\n <semantics>\n <msub>\n <mtext>(ClCO)</mtext>\n <mn>2</mn>\n </msub>\n <annotation>$\\text{(ClCO)}_2$</annotation>\n </semantics></math>.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/kin.21723","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21723","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxalyl chloride, (ClCO) 2 $\text{(ClCO)}_2$ , is widely used as a photolytic source of Cl atoms in reaction kinetics studies. (ClCO) 2 $\text{(ClCO)}_2$ photolysis is typically assumed to produce Cl atoms with an overall yield of 2 via three-body dissociation, (ClCO) 2 + h ν Cl + CO + ClCO $\text{(ClCO)}_2 + h\nu \rightarrow \text{Cl} + \text{CO} + \text{ClCO}^*$ , followed by fast subsequent ClCO unimolecular decomposition of either the energetically excited ClCO ${\rm ClCO}^*$ fragment, ClCO Cl + CO $\text{ClCO}^* \rightarrow \text{Cl} + \text{CO}$ , or the thermalized ClCO radical, ClCO + M Cl + CO + M $\text{ClCO} + \text{M} \rightarrow \text{Cl} + \text{CO} + \text{M}$ . However, a study by Huang et al. (J. Phys. Chem. A 121 (2017) 2888–2895) found that UV photolysis of (ClCO) 2 $\text{(ClCO)}_2$ at 248 nm $248\ {\rm nm}$ directly yields Cl 2 ${\rm Cl}_2$ with a photolysis quantum yield of ϕ ( Cl 2 ) > 14 % $\phi (\text{Cl}_2) &gt; 14\%$ . This new product pathway may complicate the use of (ClCO) 2 $\text{(ClCO)}_2$ as a clean source of Cl atoms and challenges the previously accepted photodissociation scheme. The purpose of the present work was 2-fold. Firstly, the unimolecular decomposition of ClCO ${\rm ClCO}^*$ and ClCO radicals has been investigated in (ClCO) 2 $\text{(ClCO)}_2$ / C 2 H 6 / Ar $\text{C}_{2}\text{H}_6{\rm {/Ar}}$ gas mixtures after UV photolysis at 266 $266\ {\rm }$ and 355 nm $355\ {\rm nm}$ . Cl atoms were captured by C 2 H 6 $\text{C}_{2}\text{H}_6$ added in excess such that concentration-time profiles of HCl measured by means of mid-infrared frequency modulation spectroscopy reflect the temporally separated Cl formation pathways. The low-pressure thermal ClCO decomposition rate constant was determined to be k = ( 1.79 ± 0.17 ) × 10 14 cm 3 molecule 1 s 1 $k = (1.79 \pm 0.17)\times 10^{-14}\ \text{cm}^{3}\ \text{molecule}^{-1}\ \text{s}^{-1}$ at 295 K $295\ {\rm K}$ , which is in very good agreement with previously reported literature values. Secondly, the photolysis quantum yield of direct Cl 2 ${\rm Cl}_2$ formation from (ClCO) 2 $\text{(ClCO)}_2$ photofragmentation was studied with time-of-flight mass spectrometry using a photoelectron photoion coincidence setup. Calibrated Cl 2 ${\rm Cl}_2$ concentration-time profiles were recorded and analyzed using kinetic simulations accounting for both direct and secondary formation of Cl 2 ${\rm Cl}_2$ from photolysis and reactions involving Cl, ClCO, and (ClCO) 2 $\text{(ClCO)}_2$ , respectively. Direct Cl 2 ${\rm Cl}_2$ formation could be confirmed, where wavelength-dependent quantum yields of ϕ ( Cl 2 ) = ( 5.0 ± 1.6 ) % $\phi (\text{Cl}_2) = (5.0 \pm 1.6)\%$ , ( 10.0 ± 3.3 ) % $(10.0 \pm 3.3)\%$ , and ( 5.6 ± 2.0 ) % $(5.6 \pm 2.0)\%$ at 213 nm $213\ {\rm nm}$ , 266 nm $266\ {\rm nm}$ , and 355 nm $355\ {\rm nm}$ were determined. Complementary quantum-chemical calculations of the potential energy diagram for ground-state photodissociation reveal a low-lying energy barrier for the formation of phosgene, Cl 2 CO ${\rm Cl}_2{\rm CO}$ . We suggest that subsequent Cl 2 ${\rm Cl}_2$ and Cl formation from energetically excited Cl 2 CO ${\rm Cl}_2{\rm CO}$ may actually play a role for the overall photodissociation of (ClCO) 2 $\text{(ClCO)}_2$ .

Abstract Image

草酰氯的紫外线光解:ClCO 自由基分解和直接 Cl2${\rm Cl}_2 {\rm }$ 形成途径
在反应动力学研究中,草酰氯被广泛用作 Cl 原子的光解源。通常假定光解是通过三体解离产生总产率为 2 的 Cl 原子,随后是能量激发碎片或热化 ClCO 自由基的快速 ClCO 单分子分解。然而,Huang 等人的研究(J. Phys.A 121 (2017) 2888-2895)的研究发现,紫外光解在直接产生的光解量子产率为 。 这种新的产物途径可能会使作为清洁 Cl 原子源的 ClCO 的使用复杂化,并对之前公认的光解方案提出了挑战。本研究的目的有两个。首先,研究了在和的紫外光解条件下,在/气体混合物中 ClCO 和 ClCO 自由基的单分子分解。过量添加的 Cl 原子被捕获,因此通过中红外调频光谱法测量的 HCl 浓度-时间曲线反映了时间上分离的 Cl 形成途径。经测定,ClCO 的低压热分解速率常数为 ,这与之前报道的文献值非常吻合。其次,利用光电子光子重合装置,通过飞行时间质谱法研究了光破碎直接形成的光解量子产率。记录了校准浓度-时间曲线,并利用动力学模拟分析了由光解和涉及 Cl、ClCO 和Ⅴ的反应直接形成和二次形成的情况。直接形成是可以确认的,其中确定了 、 、 、 和 的与波长相关的量子产率。对基态光解离的势能图进行的补充量子化学计算显示,光气(Ⅴ)的形成存在低位能垒。我们认为,随后从能量激发中形成的和 Cl 实际上可能在Ⅳ和Ⅴ的整个光解离过程中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信