{"title":"Towards Few-Label Vertical Federated Learning","authors":"Lei Zhang, Lele Fu, Chen Liu, Zhao Yang, Jinghua Yang, Zibin Zheng, Chuan Chen","doi":"10.1145/3656344","DOIUrl":null,"url":null,"abstract":"<p>Federated Learning (FL) provided a novel paradigm for privacy-preserving machine learning, enabling multiple clients to collaborate on model training without sharing private data. To handle multi-source heterogeneous data, vertical federated learning (VFL) has been extensively investigated. However, in the context of VFL, the label information tends to be kept in one authoritative client and is very limited. This poses two challenges for model training in the VFL scenario: On the one hand, a small number of labels cannot guarantee to train a well VFL model with informative network parameters, resulting in unclear boundaries for classification decisions; On the other hand, the large amount of unlabeled data is dominant and should not be discounted, and it’s worthwhile to focus on how to leverage them to improve representation modeling capabilities. In order to address the above two challenges, Firstly, we introduce supervised contrastive loss to enhance the intra-class aggregation and inter-class estrangement, which is to deeply explore label information and improve the effectiveness of downstream classification tasks. Secondly, for unlabeled data, we introduce a pseudo-label-guided consistency mechanism to induce the classification results coherent across clients, which allows the representations learned by local networks to absorb the knowledge from other clients, and alleviates the disagreement between different clients for classification tasks. We conduct sufficient experiments on four commonly used datasets, and the experimental results demonstrate that our method is superior to the state-of-the-art methods, especially in the low-label rate scenario, and the improvement becomes more significant.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"142 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656344","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning (FL) provided a novel paradigm for privacy-preserving machine learning, enabling multiple clients to collaborate on model training without sharing private data. To handle multi-source heterogeneous data, vertical federated learning (VFL) has been extensively investigated. However, in the context of VFL, the label information tends to be kept in one authoritative client and is very limited. This poses two challenges for model training in the VFL scenario: On the one hand, a small number of labels cannot guarantee to train a well VFL model with informative network parameters, resulting in unclear boundaries for classification decisions; On the other hand, the large amount of unlabeled data is dominant and should not be discounted, and it’s worthwhile to focus on how to leverage them to improve representation modeling capabilities. In order to address the above two challenges, Firstly, we introduce supervised contrastive loss to enhance the intra-class aggregation and inter-class estrangement, which is to deeply explore label information and improve the effectiveness of downstream classification tasks. Secondly, for unlabeled data, we introduce a pseudo-label-guided consistency mechanism to induce the classification results coherent across clients, which allows the representations learned by local networks to absorb the knowledge from other clients, and alleviates the disagreement between different clients for classification tasks. We conduct sufficient experiments on four commonly used datasets, and the experimental results demonstrate that our method is superior to the state-of-the-art methods, especially in the low-label rate scenario, and the improvement becomes more significant.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.