Rachel A. Jones Lipinski, Jennifer S Stancill, Raymundo Nuñez, Sarah L Wynia-Smith, Daniel J Sprague, Joshua A Nord, Amir Bird, John A Corbett, Brian C Smith
{"title":"Zinc-chelating BET bromodomain inhibitors equally target islet endocrine cell types","authors":"Rachel A. Jones Lipinski, Jennifer S Stancill, Raymundo Nuñez, Sarah L Wynia-Smith, Daniel J Sprague, Joshua A Nord, Amir Bird, John A Corbett, Brian C Smith","doi":"10.1152/ajpregu.00259.2023","DOIUrl":null,"url":null,"abstract":"Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETi) is associated with adverse effects. Here, we explore a strategy for targeting BETi to β-cells by exploiting the high zinc (Zn<sup>2+</sup>) concentration in β-cells relative to other cell types. We report the synthesis of a novel, Zn<sup>2+</sup>-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn<sup>2+</sup>-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn<sup>2+</sup>. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in β-cells stimulated with the pro-inflammatory cytokine interleukin 1β. To assess β-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive β-cells and mTomato in insulin-negative cells (non-β-cells). Surprisingly, Zn<sup>2+</sup>-chelation did not confer β-cell selectivity as (+)-JQ1-DPA was equally effective in both β- and α-cells; however, (+)-JQ1-DPA was less effective in macrophages, a non-endocrine islet cell type. Intriguingly, the non-Zn<sup>2+</sup>-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared to (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn<sup>2+</sup>-chelating small molecules confer endocrine cell selectivity rather than β-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn<sup>2+</sup>-chelation as an approach to selectively target small molecules to pancreatic β-cells.","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00259.2023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETi) is associated with adverse effects. Here, we explore a strategy for targeting BETi to β-cells by exploiting the high zinc (Zn2+) concentration in β-cells relative to other cell types. We report the synthesis of a novel, Zn2+-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in β-cells stimulated with the pro-inflammatory cytokine interleukin 1β. To assess β-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive β-cells and mTomato in insulin-negative cells (non-β-cells). Surprisingly, Zn2+-chelation did not confer β-cell selectivity as (+)-JQ1-DPA was equally effective in both β- and α-cells; however, (+)-JQ1-DPA was less effective in macrophages, a non-endocrine islet cell type. Intriguingly, the non-Zn2+-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared to (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+-chelating small molecules confer endocrine cell selectivity rather than β-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+-chelation as an approach to selectively target small molecules to pancreatic β-cells.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.