{"title":"An enhanced method for predicting and analysing forest fires using an attention-based CNN model","authors":"Shaifali Bhatt, Usha Chouhan","doi":"10.1007/s11676-024-01717-7","DOIUrl":null,"url":null,"abstract":"<p>Prediction, prevention, and control of forest fires are crucial on at all scales. Developing effective fire detection systems can aid in their control. This study proposes a novel CNN (convolutional neural network) using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks. The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors. The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors. For selected meteorological data, RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs. These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"95 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01717-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction, prevention, and control of forest fires are crucial on at all scales. Developing effective fire detection systems can aid in their control. This study proposes a novel CNN (convolutional neural network) using an attention blocks module which combines an attention module with numerous input layers to enhance the performance of neural networks. The suggested model focuses on predicting the damage affected/burned areas due to possible wildfires and evaluating the multilateral interactions between the pertinent factors. The results show the impacts of CNN using attention blocks for feature extraction and to better understand how ecosystems are affected by meteorological factors. For selected meteorological data, RMSE 12.08 and MAE 7.45 values provide higher predictive power for selecting relevant and necessary features to provide optimal performance with less operational and computational costs. These findings show that the suggested strategy is reliable and effective for planning and managing fire-prone regions as well as for predicting forest fire damage.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.