{"title":"Construction and Properties of Superhydrophobic Materials Using SiO2 Hybrid High Fluorine Epoxy Polymers","authors":"Chengmin Hou, Weimin Yan","doi":"10.1007/s13369-024-08955-1","DOIUrl":null,"url":null,"abstract":"<div><p>Superhydrophobic surfaces have been widely studied for their self-cleaning properties. However, most of the constructed superhydrophobic surfaces had problems of changing the surface morphology and color of paper/cloth. An extremely dilute superhydrophobic solution was prepared by hybrid assembly of aminated nano-SiO<sub>2</sub> and high fluorine epoxy polymer P(FOEMA-<i>r</i>-GMA). The preparation of superhydrophobic cotton (SHC) and superhydrophobic book paper (SHBP) was studied through the optimal construction conditions of solution impregnation method. The optimal construction conditions for SHC were as follows: The concentration of fluorinated epoxy polymer was 3 mg/mL, the soaking time was 5 h, the drying time was 8 h, and the drying temperature was 120 °C. The maximum WCA was 158° ± 3<i>°</i>, and the minimum WRA was 4<i>°</i> ± 3<i>°</i>. SHC surface had good hydrophobic effect, acid and alkali resistance, and self-cleaning effect. Additionally, its surface morphology still remained basically unchanged. SHC could be used for oil–water separation with a maximum oil–water separation rate of 98.4%. The optimal construction conditions for SHBP were: The concentration of fluorinated epoxy polymer was 3 mg/mL, the soaking time was 9 h, the drying time was 6 h, the maximum WCA was 155<i>°</i> ± 3<i>°</i>, and the minimum WRA was 6<i>°</i> ± 1<i>°</i>. The hydrophobicity of SHBP was greatly improved; it would extract selective adsorbing oil from the oil–water mixture and slightly reduce its smoothness.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"49 7","pages":"9625 - 9636"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-08955-1","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Superhydrophobic surfaces have been widely studied for their self-cleaning properties. However, most of the constructed superhydrophobic surfaces had problems of changing the surface morphology and color of paper/cloth. An extremely dilute superhydrophobic solution was prepared by hybrid assembly of aminated nano-SiO2 and high fluorine epoxy polymer P(FOEMA-r-GMA). The preparation of superhydrophobic cotton (SHC) and superhydrophobic book paper (SHBP) was studied through the optimal construction conditions of solution impregnation method. The optimal construction conditions for SHC were as follows: The concentration of fluorinated epoxy polymer was 3 mg/mL, the soaking time was 5 h, the drying time was 8 h, and the drying temperature was 120 °C. The maximum WCA was 158° ± 3°, and the minimum WRA was 4° ± 3°. SHC surface had good hydrophobic effect, acid and alkali resistance, and self-cleaning effect. Additionally, its surface morphology still remained basically unchanged. SHC could be used for oil–water separation with a maximum oil–water separation rate of 98.4%. The optimal construction conditions for SHBP were: The concentration of fluorinated epoxy polymer was 3 mg/mL, the soaking time was 9 h, the drying time was 6 h, the maximum WCA was 155° ± 3°, and the minimum WRA was 6° ± 1°. The hydrophobicity of SHBP was greatly improved; it would extract selective adsorbing oil from the oil–water mixture and slightly reduce its smoothness.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.