What Are and What Are Not Extrema Points? Examining Definitions and Examples

IF 1.9 3区 教育学 Q2 EDUCATION & EDUCATIONAL RESEARCH
Pessia Tsamir, Dina Tirosh, Regina Ovodenko
{"title":"What Are and What Are Not Extrema Points? Examining Definitions and Examples","authors":"Pessia Tsamir, Dina Tirosh, Regina Ovodenko","doi":"10.1007/s10763-024-10458-2","DOIUrl":null,"url":null,"abstract":"<p>This paper reports on five secondary school mathematics prospective teachers’ conceptions of <i>extreme point</i>. The analysis of the data addressed students’ definitions, examples, and evaluation of given examples, with special attention to the related domain. Written assignments and individual interviews uncover salient, erroneous concept images regarding what <i>is</i> and what <i>is not</i> an extreme point. Participants viewed extrema points as points that necessarily satisfy <i>f</i>′ = 0 or as points that are always at a “change in monoticity” of the function. The topic “extreme points” is both an aim and a mean to address broader issues related to mathematical definitions, examples, and nonexamples. We conclude with possible next-step ideas.</p>","PeriodicalId":14267,"journal":{"name":"International Journal of Science and Mathematics Education","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science and Mathematics Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s10763-024-10458-2","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports on five secondary school mathematics prospective teachers’ conceptions of extreme point. The analysis of the data addressed students’ definitions, examples, and evaluation of given examples, with special attention to the related domain. Written assignments and individual interviews uncover salient, erroneous concept images regarding what is and what is not an extreme point. Participants viewed extrema points as points that necessarily satisfy f′ = 0 or as points that are always at a “change in monoticity” of the function. The topic “extreme points” is both an aim and a mean to address broader issues related to mathematical definitions, examples, and nonexamples. We conclude with possible next-step ideas.

Abstract Image

什么是极值点,什么不是?研究定义和示例
本文报告了五位中学数学准教师对极值点的概念。数据分析涉及学生的定义、例子和对给定例子的评价,并特别关注相关领域。书面作业和个别访谈揭示了关于什么是极值点和什么不是极值点的突出的、错误的概念图像。学员们将极值点视为必然满足 f′ = 0 的点,或始终处于函数 "单调性变化 "处的点。讨论 "极值点 "既是目的,也是解决与数学定义、示例和非示例相关的更广泛问题的手段。最后,我们提出了下一步可能的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
9.10%
发文量
87
期刊介绍: The objective of this journal is to publish original, fully peer-reviewed articles on a variety of topics and research methods in both science and mathematics education. The journal welcomes articles that address common issues in mathematics and science education and cross-curricular dimensions more widely. Specific attention will be paid to manuscripts written by authors whose native language is not English and the editors have made arrangements for support in re-writing where appropriate. Contemporary educators highlight the importance of viewing knowledge as context-oriented and not limited to one domain. This concurs with current curriculum reforms worldwide for interdisciplinary and integrated curricula. Modern educational practice also focuses on the use of new technology in assisting instruction which may be easily implemented into such an integrated curriculum. The journal welcomes studies that explore science and mathematics education from different cultural perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信