Synthesis of bio-stabilized silver nanoparticles using Roccella montagnei, their anticandidal capacities & potential to inhibit the virulence factors in fluconazole-resistant Candida albicans
{"title":"Synthesis of bio-stabilized silver nanoparticles using Roccella montagnei, their anticandidal capacities & potential to inhibit the virulence factors in fluconazole-resistant Candida albicans","authors":"Shweta Bharti, Balwant Singh, Sanket Kumar, Rajesh Kumar, Jatinder Kumar","doi":"10.1007/s11274-024-03928-w","DOIUrl":null,"url":null,"abstract":"<p><i>Candida</i> species is the causative agent in approximately 80% of invasive mycoses and drug-resistant <i>Candida albicans</i> is among the four strains of ‘critical priority group’ framed by WHO. Lichens are endowed with some rare phytochemicals and a plethora of therapeutics viz. antifungal capacities of <i>Roccella montagnei</i>. Biosynthesis of silver nanoparticles (AgNPs) using lichen could offer an eco-friendly, and cost-effective alternative against emerging ‘microbial resistance.’ Therefore, the objective was to biosynthesize silver nanoparticles (Rm-AgNPs) using a Hydro-alcoholic (1:1) extract of <i>R. montagnei</i> to develop a potent anticandidal agent against Fluconazole-resistant <i>C. albicans</i> NBC099. UV-Spectroscopy identified AgNPs specific-peak of Rm-AgNPs at 420–440 nm and FTIR revealed the presence of amines, alcohol, aromatic compounds, and acids. SEM and TEM analysis indicated that Rm-AgNPs are spherical shaped with a size range of 10–50 nm. Zetasizer analysis indicated that particles are highly stable and have a mean hydrodynamic diameter of 116 nm with a zeta potential charge of − 41 mV. XRD analysis suggested face centered cubic crystal lattice structure. Results indicated that Rm-AgNPs strongly inhibited the growth of NBC099 at a minimum inhibitory concentration (IC<sub>50</sub>) of ≤ 15 µg. <i>C. albicans</i> culture treated with Rm-AgNPs at concentrations below IC<sub>50</sub>, down-regulates the production of different virulence factors in NBC099, viz. hyphal formation (> 85%), biofilms production (> 80%), phospholipase, esterase, proteinase activity. The apoptosis assay demonstrated the Rm-AgNPs induced apoptosis in NBC099 cells via oxidative stress. Interestingly, Rm-AgNPs showed negligible cytotoxicity (< 6%) in murine RAW 246.7 macrophage cells at a concentration above 15 µg/mL. Therefore, Rm-AgNPs have been offered as an anti-candida alternative that can be utilized to improve the efficacy of already available medications.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":23744,"journal":{"name":"World Journal of Microbiology and Biotechnology","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11274-024-03928-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Candida species is the causative agent in approximately 80% of invasive mycoses and drug-resistant Candida albicans is among the four strains of ‘critical priority group’ framed by WHO. Lichens are endowed with some rare phytochemicals and a plethora of therapeutics viz. antifungal capacities of Roccella montagnei. Biosynthesis of silver nanoparticles (AgNPs) using lichen could offer an eco-friendly, and cost-effective alternative against emerging ‘microbial resistance.’ Therefore, the objective was to biosynthesize silver nanoparticles (Rm-AgNPs) using a Hydro-alcoholic (1:1) extract of R. montagnei to develop a potent anticandidal agent against Fluconazole-resistant C. albicans NBC099. UV-Spectroscopy identified AgNPs specific-peak of Rm-AgNPs at 420–440 nm and FTIR revealed the presence of amines, alcohol, aromatic compounds, and acids. SEM and TEM analysis indicated that Rm-AgNPs are spherical shaped with a size range of 10–50 nm. Zetasizer analysis indicated that particles are highly stable and have a mean hydrodynamic diameter of 116 nm with a zeta potential charge of − 41 mV. XRD analysis suggested face centered cubic crystal lattice structure. Results indicated that Rm-AgNPs strongly inhibited the growth of NBC099 at a minimum inhibitory concentration (IC50) of ≤ 15 µg. C. albicans culture treated with Rm-AgNPs at concentrations below IC50, down-regulates the production of different virulence factors in NBC099, viz. hyphal formation (> 85%), biofilms production (> 80%), phospholipase, esterase, proteinase activity. The apoptosis assay demonstrated the Rm-AgNPs induced apoptosis in NBC099 cells via oxidative stress. Interestingly, Rm-AgNPs showed negligible cytotoxicity (< 6%) in murine RAW 246.7 macrophage cells at a concentration above 15 µg/mL. Therefore, Rm-AgNPs have been offered as an anti-candida alternative that can be utilized to improve the efficacy of already available medications.