{"title":"Radiation effects on scientific complementary metal-oxide-semiconductor detectors for x-ray astronomy: II. Total ionizing dose irradiation","authors":"Mengxi Chen, Zhixing Ling, Mingjun Liu, Qinyu Wu, Chen Zhang, Jiaqiang Liu, Zhenlong Zhang, Weimin Yuan, Shuang-Nan Zhang","doi":"10.1117/1.jatis.10.2.026001","DOIUrl":null,"url":null,"abstract":"Complementary metal-oxide-semiconductor (CMOS) detectors are a competitive choice for current and upcoming astronomical missions. To understand the performance variations of CMOS detectors in the space environment, we investigate the total ionizing dose effects on custom-made large-format X-ray CMOS detectors. Three CMOS detector samples were irradiated with a Co60 source with a total dose of 70 and 105 krad. We test and compare the performance of these detectors before and after irradiation. After irradiation, the dark current increases by roughly 20∼100 times, and the readout noise increases from 3 e− to 6 e−. The bias level at 50 ms integration time decreases by 13 to 18 digital number (DN) at −30°C. The energy resolution increases from ∼150 to ∼170 eV at 4.5 keV at −30°C. The conversion gain of the detectors varies for <2% after the irradiation. Furthermore, there are about 50 pixels in which bias at 50 ms has changed by more than 20 DN after the exposure to the radiation and about 30 to 140 pixels in which the readout noise has increased by over 20 e− at −30°C at 50 ms integration time. These results demonstrate that the performances of large-format CMOS detectors do not suffer significant degeneration in space environment.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.2.026001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Complementary metal-oxide-semiconductor (CMOS) detectors are a competitive choice for current and upcoming astronomical missions. To understand the performance variations of CMOS detectors in the space environment, we investigate the total ionizing dose effects on custom-made large-format X-ray CMOS detectors. Three CMOS detector samples were irradiated with a Co60 source with a total dose of 70 and 105 krad. We test and compare the performance of these detectors before and after irradiation. After irradiation, the dark current increases by roughly 20∼100 times, and the readout noise increases from 3 e− to 6 e−. The bias level at 50 ms integration time decreases by 13 to 18 digital number (DN) at −30°C. The energy resolution increases from ∼150 to ∼170 eV at 4.5 keV at −30°C. The conversion gain of the detectors varies for <2% after the irradiation. Furthermore, there are about 50 pixels in which bias at 50 ms has changed by more than 20 DN after the exposure to the radiation and about 30 to 140 pixels in which the readout noise has increased by over 20 e− at −30°C at 50 ms integration time. These results demonstrate that the performances of large-format CMOS detectors do not suffer significant degeneration in space environment.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.