Balsam Qubais Saeed, Rania Hamdy, Noor Akbar, Sreedevi Edathadan Sajeevan, Naveed Ahmed Khan and Sameh S. M. Soliman
{"title":"Azole-based compounds as potential anti-Acanthamoeba agents†","authors":"Balsam Qubais Saeed, Rania Hamdy, Noor Akbar, Sreedevi Edathadan Sajeevan, Naveed Ahmed Khan and Sameh S. M. Soliman","doi":"10.1039/D4MD00029C","DOIUrl":null,"url":null,"abstract":"<p >\r\n <em>Acanthamoeba castellanii</em> is an opportunistic pathogen with public health implications, largely due to its invasive nature and non-specific symptoms. Our study focuses on the potential of azole compounds, particularly those with triazole scaffolds, as anti-amoebic agents. Out of 10 compounds, compounds <strong>T1</strong> and <strong>T8</strong> exhibited effective anti-<em>Acanthamoeba</em> activity with MIC<small><sub>50</sub></small> values of 125.37 and 143.92 μg mL<small><sup>−1</sup></small>, respectively. Interestingly, compounds <strong>T1</strong>, <strong>T4</strong>, <strong>T5</strong> and <strong>T8</strong> revealed profound anti-excystation activity with MIC<small><sub>50</sub></small> at 32.01, 85.53, 19.54 and 80.57 μg mL<small><sup>−1</sup></small>, respectively, alongside limited cytotoxicity to human cells. The study underscores the potential of <strong>T1</strong>, <strong>T4</strong>, <strong>T5</strong>, and <strong>T8</strong>, thiazole-based compounds, as anti-<em>Acanthamoeba</em> agents by both eliminating amoeba viability and preventing excystation, <em>via</em> preserving the amoeba in its latent cyst form, exposing them to elimination by the immune system. Notably, compounds <strong>T1</strong>, <strong>T4</strong>, <strong>T5</strong>, and <strong>T8</strong> showed optimal molecular properties, moderate oral bioavailability, and stable complex formation with <em>Acanthamoeba</em> CYP51. They also display superior binding interactions. Further research is needed to understand their mechanisms and optimize their efficacy against <em>Acanthamoeba</em> infections.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 5","pages":" 1578-1588"},"PeriodicalIF":3.5970,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00029c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Acanthamoeba castellanii is an opportunistic pathogen with public health implications, largely due to its invasive nature and non-specific symptoms. Our study focuses on the potential of azole compounds, particularly those with triazole scaffolds, as anti-amoebic agents. Out of 10 compounds, compounds T1 and T8 exhibited effective anti-Acanthamoeba activity with MIC50 values of 125.37 and 143.92 μg mL−1, respectively. Interestingly, compounds T1, T4, T5 and T8 revealed profound anti-excystation activity with MIC50 at 32.01, 85.53, 19.54 and 80.57 μg mL−1, respectively, alongside limited cytotoxicity to human cells. The study underscores the potential of T1, T4, T5, and T8, thiazole-based compounds, as anti-Acanthamoeba agents by both eliminating amoeba viability and preventing excystation, via preserving the amoeba in its latent cyst form, exposing them to elimination by the immune system. Notably, compounds T1, T4, T5, and T8 showed optimal molecular properties, moderate oral bioavailability, and stable complex formation with Acanthamoeba CYP51. They also display superior binding interactions. Further research is needed to understand their mechanisms and optimize their efficacy against Acanthamoeba infections.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.