{"title":"Extension of the a posteriori finite element method (APFEM) to geometrical alterations and application to stochastic homogenisation","authors":"Yanis Ammouche, Antoine Jérusalem","doi":"10.1002/nme.7482","DOIUrl":null,"url":null,"abstract":"<p>We recently proposed an efficient method facilitating the parametric study of a finite element mechanical simulation as a postprocessing step, that is, without the need to run multiple simulations: the a posteriori finite element method (APFEM). APFEM only requires the knowledge of the vertices of the parameter space and is able to predict accurately how the degrees of freedom of a simulation, i.e., nodal displacements, and other outputs of interests, for example, element stress tensors, evolve when simulation parameters vary within their predefined ranges. In our previous work, these parameters were restricted to material properties and loading conditions. Here, we extend the APFEM to additionally account for changes in the original geometry. This is achieved by defining an intermediary reference frame whose mapping is defined stochastically in the weak form. Subsequent deformation is then reached by correcting for this stochastic variation in the reference frame through multiplicative decomposition of the deformation gradient tensor. The resulting framework is shown here to provide accurate mechanical predictions for relevant applications of increasing complexity: (i) quantifying the stress concentration factor of a plate under uniaxial loading with one and two elliptical holes of varying eccentricities, and (ii) performing the stochastic homogenisation of a composite plate with uncertain mechanical properties and geometry inclusion. This extension of APFEM completes our original approach to account parametrically for geometrical alterations, in addition to boundary conditions and material properties. The advantages of this approach in our original work in terms of stochastic prediction, uncertainty quantification, structural and material optimisation and Bayesian inferences are all naturally conserved.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"125 14","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7482","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7482","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We recently proposed an efficient method facilitating the parametric study of a finite element mechanical simulation as a postprocessing step, that is, without the need to run multiple simulations: the a posteriori finite element method (APFEM). APFEM only requires the knowledge of the vertices of the parameter space and is able to predict accurately how the degrees of freedom of a simulation, i.e., nodal displacements, and other outputs of interests, for example, element stress tensors, evolve when simulation parameters vary within their predefined ranges. In our previous work, these parameters were restricted to material properties and loading conditions. Here, we extend the APFEM to additionally account for changes in the original geometry. This is achieved by defining an intermediary reference frame whose mapping is defined stochastically in the weak form. Subsequent deformation is then reached by correcting for this stochastic variation in the reference frame through multiplicative decomposition of the deformation gradient tensor. The resulting framework is shown here to provide accurate mechanical predictions for relevant applications of increasing complexity: (i) quantifying the stress concentration factor of a plate under uniaxial loading with one and two elliptical holes of varying eccentricities, and (ii) performing the stochastic homogenisation of a composite plate with uncertain mechanical properties and geometry inclusion. This extension of APFEM completes our original approach to account parametrically for geometrical alterations, in addition to boundary conditions and material properties. The advantages of this approach in our original work in terms of stochastic prediction, uncertainty quantification, structural and material optimisation and Bayesian inferences are all naturally conserved.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.