{"title":"Experimental and molecular dynamics simulation study on antifouling performance of antimicrobial peptide-modified aluminum alloy surfaces","authors":"Wencheng Liu, Tong Lou, Xiuqin Bai, Xiaoyan He, Chengqing Yuan","doi":"10.1002/sia.7311","DOIUrl":null,"url":null,"abstract":"Marine biofouling poses a major challenge to ship navigation and hinders the development of the shipping industry. Urgent action is required to tackle this problem through the implementation of innovative strategies. Antimicrobial peptides have garnered considerable attention due to their outstanding effectiveness, wide range of activity, and eco-friendly characteristics. This study involved grafting the antibacterial peptide <i>andricin 01</i> (AIGHCLGATL) onto the surface of an aluminum alloy, thereby creating a modified surface with antibacterial properties. In summary, amino groups were introduced onto the surface of aluminum alloys through the silanization process using (3-aminopropyl) triethoxysilane (APTES), and then the peptides were covalently immobilized on the treated surface using glutaraldehyde as a cross-linking agent. The successful modification of the peptide was confirmed by Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis. The antimicrobial peptide-modified aluminum alloy surfaces exhibited significant bactericidal activity, killing 75.3% of <i>Bacillus</i> sp. and 85.5% of <i>Escherichia coli</i>, while achieving antifouling efficiencies of 88.6% and 90.7% against <i>Bacillus</i> sp. and <i>E. coli</i>, respectively. Furthermore, molecular dynamics simulations showed that the inserted of the peptides into the phospholipid membrane caused a change in the local membrane curvature, which eventually led to membrane rupture. These results provide valuable information for the application of antimicrobial peptides in the field of antifouling and the elucidation of antifouling mechanisms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7311","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine biofouling poses a major challenge to ship navigation and hinders the development of the shipping industry. Urgent action is required to tackle this problem through the implementation of innovative strategies. Antimicrobial peptides have garnered considerable attention due to their outstanding effectiveness, wide range of activity, and eco-friendly characteristics. This study involved grafting the antibacterial peptide andricin 01 (AIGHCLGATL) onto the surface of an aluminum alloy, thereby creating a modified surface with antibacterial properties. In summary, amino groups were introduced onto the surface of aluminum alloys through the silanization process using (3-aminopropyl) triethoxysilane (APTES), and then the peptides were covalently immobilized on the treated surface using glutaraldehyde as a cross-linking agent. The successful modification of the peptide was confirmed by Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis. The antimicrobial peptide-modified aluminum alloy surfaces exhibited significant bactericidal activity, killing 75.3% of Bacillus sp. and 85.5% of Escherichia coli, while achieving antifouling efficiencies of 88.6% and 90.7% against Bacillus sp. and E. coli, respectively. Furthermore, molecular dynamics simulations showed that the inserted of the peptides into the phospholipid membrane caused a change in the local membrane curvature, which eventually led to membrane rupture. These results provide valuable information for the application of antimicrobial peptides in the field of antifouling and the elucidation of antifouling mechanisms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.