{"title":"Ensemble Kalman filter in geoscience meets model predictive control","authors":"Yohei Sawada","doi":"10.48550/arxiv.2403.06371","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Although data assimilation originates from control theory, the relationship between modern data assimilation methods in geoscience and model predictive control has not been extensively explored. In the present paper, I discuss that the modern data assimilation methods in geoscience and model predictive control essentially minimize the similar quadratic cost functions. Inspired by this similarity, I propose a new ensemble Kalman filter (EnKF)-based method for controlling spatio-temporally chaotic systems, which can readily be applied to high-dimensional and nonlinear Earth systems. In this method, the reference vector, which serves as the control target, is assimilated into the state space as a pseudo-observation by ensemble Kalman smoother to obtain the appropriate perturbation to be added to a system. A proof-of-concept experiment using the Lorenz 63 model is presented. The system is constrained in one wing of the butterfly attractor without tipping to the other side by reasonably small control perturbations which are comparable with previous works.","PeriodicalId":54714,"journal":{"name":"Nonlinear Processes in Geophysics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Processes in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.48550/arxiv.2403.06371","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Although data assimilation originates from control theory, the relationship between modern data assimilation methods in geoscience and model predictive control has not been extensively explored. In the present paper, I discuss that the modern data assimilation methods in geoscience and model predictive control essentially minimize the similar quadratic cost functions. Inspired by this similarity, I propose a new ensemble Kalman filter (EnKF)-based method for controlling spatio-temporally chaotic systems, which can readily be applied to high-dimensional and nonlinear Earth systems. In this method, the reference vector, which serves as the control target, is assimilated into the state space as a pseudo-observation by ensemble Kalman smoother to obtain the appropriate perturbation to be added to a system. A proof-of-concept experiment using the Lorenz 63 model is presented. The system is constrained in one wing of the butterfly attractor without tipping to the other side by reasonably small control perturbations which are comparable with previous works.
期刊介绍:
Nonlinear Processes in Geophysics (NPG) is an international, inter-/trans-disciplinary, non-profit journal devoted to breaking the deadlocks often faced by standard approaches in Earth and space sciences. It therefore solicits disruptive and innovative concepts and methodologies, as well as original applications of these to address the ubiquitous complexity in geoscience systems, and in interacting social and biological systems. Such systems are nonlinear, with responses strongly non-proportional to perturbations, and show an associated extreme variability across scales.