Jiarui Liu, Yidong Xu, Jialei Wang, Wensheng Zhang, Jiayuan Ye, Rui Wang
{"title":"The immobilizing performance and mechanism of geopolymer and its derivative materials for high-level radionuclides Cs and Sr: a review","authors":"Jiarui Liu, Yidong Xu, Jialei Wang, Wensheng Zhang, Jiayuan Ye, Rui Wang","doi":"10.1007/s41779-024-01018-6","DOIUrl":null,"url":null,"abstract":"<div><p>How to properly handle the high-level radionuclides cesium(Cs) and strontium(Sr) generated during the nuclear fuel cycle has become a challenging issue. Geopolymer, a novel aluminosilicate inorganic gel material, can be in-situ converted into zeolite and ceramics, exhibiting excellent immobilization capability for radioactive nuclides. This work provides a comprehensive review of the research on the conversion and synthesis methods of geopolymer into zeolite and ceramics, and conducts a detailed analysis of the performance and mechanisms of geopolymers, geopolymer-zeolite composites, and geopolymer ceramics in the immobilization of Cs and Sr. Through a thorough analysis and summary of existing literature, this study presents the optimal conditions for the conversion of geopolymers into zeolite and proposes improved methods for geopolymer ceramic immobilization of Cs. Furthermore, a comparison and analysis are conducted of the applicability, as well as the advantages and disadvantages of these three solidification matrices in immobilizing Cs and Sr. Finally, the challenges and prospects faced by geopolymer and its derivative materials in the immobilization of high-level radionuclides Cs and Sr are discussed.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"60 4","pages":"1131 - 1151"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-024-01018-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
How to properly handle the high-level radionuclides cesium(Cs) and strontium(Sr) generated during the nuclear fuel cycle has become a challenging issue. Geopolymer, a novel aluminosilicate inorganic gel material, can be in-situ converted into zeolite and ceramics, exhibiting excellent immobilization capability for radioactive nuclides. This work provides a comprehensive review of the research on the conversion and synthesis methods of geopolymer into zeolite and ceramics, and conducts a detailed analysis of the performance and mechanisms of geopolymers, geopolymer-zeolite composites, and geopolymer ceramics in the immobilization of Cs and Sr. Through a thorough analysis and summary of existing literature, this study presents the optimal conditions for the conversion of geopolymers into zeolite and proposes improved methods for geopolymer ceramic immobilization of Cs. Furthermore, a comparison and analysis are conducted of the applicability, as well as the advantages and disadvantages of these three solidification matrices in immobilizing Cs and Sr. Finally, the challenges and prospects faced by geopolymer and its derivative materials in the immobilization of high-level radionuclides Cs and Sr are discussed.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted