Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces

IF 15.7 Q1 OPTICS
Changhong Dai, Tong Liu, Dongyi Wang, Lei Zhou
{"title":"Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces","authors":"Changhong Dai, Tong Liu, Dongyi Wang, Lei Zhou","doi":"10.1186/s43074-024-00128-5","DOIUrl":null,"url":null,"abstract":"Propagating waves and surface waves are two distinct types of light-transporting modes, the free control of which are both highly desired in integration photonics. However, previously realized devices are bulky in sizes, inefficient, and/or can only achieve one type of light-manipulation functionality with a single device. Here, we propose a generic approach to design bi-channel meta-devices, constructed by carefully selected meta-atoms possessing reflection phases of both structural-resonance and geometric origins, which can exhibit two distinct light-manipulation functionalities in near-field (NF) and far-field (FF) channels, respectively. After characterizing the scattering properties of basic meta-atoms and briefly stating the theoretical strategy, we design/fabricate three different meta-devices and experimentally characterize their bi-channel wave-control functionalities in the telecom regime. Our experiments show that the first two devices can multiplex the generations of NF and FF optical vortices with different topological charges, while the third one exhibits anomalous surface plasmon polariton focusing in the NF and hologram formation in the FF simultaneously. Our results expand the wave-control functionalities of metasurfaces to all wave-transporting channels, which may inspire many exciting applications in integration optics.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"9 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-024-00128-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Propagating waves and surface waves are two distinct types of light-transporting modes, the free control of which are both highly desired in integration photonics. However, previously realized devices are bulky in sizes, inefficient, and/or can only achieve one type of light-manipulation functionality with a single device. Here, we propose a generic approach to design bi-channel meta-devices, constructed by carefully selected meta-atoms possessing reflection phases of both structural-resonance and geometric origins, which can exhibit two distinct light-manipulation functionalities in near-field (NF) and far-field (FF) channels, respectively. After characterizing the scattering properties of basic meta-atoms and briefly stating the theoretical strategy, we design/fabricate three different meta-devices and experimentally characterize their bi-channel wave-control functionalities in the telecom regime. Our experiments show that the first two devices can multiplex the generations of NF and FF optical vortices with different topological charges, while the third one exhibits anomalous surface plasmon polariton focusing in the NF and hologram formation in the FF simultaneously. Our results expand the wave-control functionalities of metasurfaces to all wave-transporting channels, which may inspire many exciting applications in integration optics.

Abstract Image

利用高效双通道元表面复用近场和远场功能
传播波和表面波是两种截然不同的光传输模式,对它们的自由控制都是集成光子学所亟需的。然而,以前实现的器件体积庞大、效率低下,并且/或者只能通过单个器件实现一种光操纵功能。在此,我们提出了一种设计双通道元器件的通用方法,该方法由精心挑选的元原子构建而成,具有结构共振和几何来源的反射相位,可分别在近场(NF)和远场(FF)通道中实现两种不同的光操纵功能。在描述了基本元原子的散射特性并简要说明了理论策略之后,我们设计/制造了三种不同的元器件,并通过实验描述了它们在电信系统中的双通道波控制功能。实验结果表明,前两个器件可以复用具有不同拓扑电荷的 NF 和 FF 光学漩涡,而第三个器件则可以同时在 NF 中显示异常表面等离子体极化子聚焦和在 FF 中显示全息图形成。我们的研究结果将超表面的波控制功能扩展到了所有波传输通道,这可能会激发集成光学中许多激动人心的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信