Multi-robot navigation based on velocity obstacle prediction in dynamic crowded environments

Yimei Chen, Yixin Wang, Baoquan Li, Tohru Kamiya
{"title":"Multi-robot navigation based on velocity obstacle prediction in dynamic crowded environments","authors":"Yimei Chen, Yixin Wang, Baoquan Li, Tohru Kamiya","doi":"10.1108/ir-12-2023-0337","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-12-2023-0337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.

Design/methodology/approach

This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.

Findings

The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.

Originality/value

In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.

基于动态拥挤环境中速度障碍预测的多机器人导航
本文旨在提出一种新的速度预测导航算法,为机器人在动态拥挤环境中制定无冲突路径。该算法将 BP 神经网络与速度倒数障碍物(PRVO)相结合,以实现动态避撞。设计/方法/方法该方法通过使用 BP 神经网络预测前方速度来重构速度障碍区域;从非自主机器人跟踪所需轨迹所产生的误差中确定与机器人可扩展半径范围相对应的优化速度;以及考虑加速度约束,确定非自主机器人在速度变化空间中的多步可达速度集,从而展示了该方法的创新性。研究结果在包括多个差分驱动机器人的模拟实验和使用 Turtkebot3 机器人的物理实验之间进行了比较,使用碰撞率、行进时间和平均距离这三个常用指标验证了该方法。实验结果表明,在这三个指标上,我们的方法优于其他 RVO 扩展方法。原创性/价值在本文中,作者提出了能够为多机器人系统自适应选择最佳速度的导航算法,以避免机器人在动态拥挤的互动过程中发生碰撞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信