{"title":"Effect of CTAB Micellar Medium on Cu(II) Catalyzed L-Leucine Oxidation by Hexacyanoferrate(III)","authors":"Abhishek Srivastava, Neetu Srivastava, Rajeev Kumar Dohare, Krishna Srivastava, Ruchi Singh","doi":"10.1134/S0012501623600201","DOIUrl":null,"url":null,"abstract":"<p>The proposed study aimed to explore the kinetics of L-leucine (Leu) oxidation in a micellar media of cetyltrimethylammonium bromide (CTAB) by hexacyanoferrate(III) {HCF(III)}. The reduction in absorbance at 420 nm, which is indicative of the concentration of HCF(III), was measured to determine the reaction rate. Applying the pseudo-first-order state, The reaction’s progression was analyzed as an indicator of [HCF(III)], temperature, [Leu], [Cu(II)], [CTAB], ionic strength, and [OH<sup>–</sup>]. The findings indicate that the [CTAB] is the crucial factor that significantly affects the rate of the reaction. The HCF(III) undergoes a 2 : 1 stoichiometric interaction with Leu and has a first-order reliance on [HCF(III)]. The observed reaction exhibits fractional-first-order kinetics with regards to [Leu], [OH<sup>–</sup>], and Cu(II), within the range of concentrations investigated. The observed linear augmentation in reaction rate upon electrolyte’s introduction is suggestive of a positive salt effect. The inclusion of CTAB substantially enhances the catalytic activity of the process. After reaching its maximum rate, the reaction exhibits a very steady behavior even when the [CTAB] is further increased. The observed decrease in CTAB CMC could potentially be attributed to the diminished electrostatic repulsion among the cationic surfactant head groups, which is caused by the anionic [Cu(OH)<sub>4</sub>]<sup>2–</sup>, OH<sup>–</sup>, and HCF(III) species.</p>","PeriodicalId":532,"journal":{"name":"Doklady Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0012501623600201","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The proposed study aimed to explore the kinetics of L-leucine (Leu) oxidation in a micellar media of cetyltrimethylammonium bromide (CTAB) by hexacyanoferrate(III) {HCF(III)}. The reduction in absorbance at 420 nm, which is indicative of the concentration of HCF(III), was measured to determine the reaction rate. Applying the pseudo-first-order state, The reaction’s progression was analyzed as an indicator of [HCF(III)], temperature, [Leu], [Cu(II)], [CTAB], ionic strength, and [OH–]. The findings indicate that the [CTAB] is the crucial factor that significantly affects the rate of the reaction. The HCF(III) undergoes a 2 : 1 stoichiometric interaction with Leu and has a first-order reliance on [HCF(III)]. The observed reaction exhibits fractional-first-order kinetics with regards to [Leu], [OH–], and Cu(II), within the range of concentrations investigated. The observed linear augmentation in reaction rate upon electrolyte’s introduction is suggestive of a positive salt effect. The inclusion of CTAB substantially enhances the catalytic activity of the process. After reaching its maximum rate, the reaction exhibits a very steady behavior even when the [CTAB] is further increased. The observed decrease in CTAB CMC could potentially be attributed to the diminished electrostatic repulsion among the cationic surfactant head groups, which is caused by the anionic [Cu(OH)4]2–, OH–, and HCF(III) species.
期刊介绍:
Doklady Physical Chemistry is a monthly journal containing English translations of current Russian research in physical chemistry from the Physical Chemistry sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The journal publishes the most significant new research in physical chemistry being done in Russia, thus ensuring its scientific priority. Doklady Physical Chemistry presents short preliminary accounts of the application of the state-of-the-art physical chemistry ideas and methods to the study of organic and inorganic compounds and macromolecules; polymeric, inorganic and composite materials as well as corresponding processes. The journal is intended for scientists in all fields of chemistry and in interdisciplinary sciences.