Development of a highly selective and sensitive fluorescent chemosensory for zinc ion detection in aqueous ethanol solution: synthesis of a new aza-oxo macrocycle using high-dilution condition method
IF 2.3 4区 化学Q2 Agricultural and Biological Sciences
{"title":"Development of a highly selective and sensitive fluorescent chemosensory for zinc ion detection in aqueous ethanol solution: synthesis of a new aza-oxo macrocycle using high-dilution condition method","authors":"Reza Azadbakht, Hasti Moshiri, Mostafa Koolivand","doi":"10.1007/s10847-024-01223-7","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing a high-dilution condition method, a new aza-oxo macrocycle, referred to as L, was synthesized as a chemosensor. The chemosensing capabilities of L were thoroughly investigated using fluorescence studies. The obtained results demonstrate that L effectively responds to the presence of zinc ions, leading to a significant increase in fluorescence intensity. Comparative studies were conducted to investigate the impact of various metal cations, including Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), Cu(II), Zn(II), Cd(II), Gd(III), Na(I), K(I), Ba(II), Mg(II), Al(III), Pb(II), Sn(II), Hg(II), and Ag(I), on the fluorescence of L in an aqueous ethanol environment. During our investigations, a binding constant value of 7.81 × 105 M<sup>−1</sup>, with a 1:1 stoichiometry for Zn<sup>2+</sup>–L interactions, was established. Additionally, a low detection limit of 2.51 × 10<sup>−8</sup> M and a rapid response time were observed. Furthermore, the chemical inputs of Zn<sup>2+</sup> and Cu<sup>2+</sup> ions meet the conditions of an INHIBIT molecular logic gate.</p></div>","PeriodicalId":638,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":"104 7-8","pages":"371 - 381"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-024-01223-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Utilizing a high-dilution condition method, a new aza-oxo macrocycle, referred to as L, was synthesized as a chemosensor. The chemosensing capabilities of L were thoroughly investigated using fluorescence studies. The obtained results demonstrate that L effectively responds to the presence of zinc ions, leading to a significant increase in fluorescence intensity. Comparative studies were conducted to investigate the impact of various metal cations, including Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), Cu(II), Zn(II), Cd(II), Gd(III), Na(I), K(I), Ba(II), Mg(II), Al(III), Pb(II), Sn(II), Hg(II), and Ag(I), on the fluorescence of L in an aqueous ethanol environment. During our investigations, a binding constant value of 7.81 × 105 M−1, with a 1:1 stoichiometry for Zn2+–L interactions, was established. Additionally, a low detection limit of 2.51 × 10−8 M and a rapid response time were observed. Furthermore, the chemical inputs of Zn2+ and Cu2+ ions meet the conditions of an INHIBIT molecular logic gate.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.