The synergy between the PscC subunits for electron transfer to the P840 special pair in Chlorobaculum tepidum

IF 2.9 3区 生物学 Q2 PLANT SCIENCES
Alexandros Lyratzakis, Vangelis Daskalakis, Hao Xie, Georgios Tsiotis
{"title":"The synergy between the PscC subunits for electron transfer to the P840 special pair in Chlorobaculum tepidum","authors":"Alexandros Lyratzakis, Vangelis Daskalakis, Hao Xie, Georgios Tsiotis","doi":"10.1007/s11120-024-01093-7","DOIUrl":null,"url":null,"abstract":"<p>The primary photochemical reaction of photosynthesis in green sulfur bacteria occurs in the homodimer PscA core proteins by a special chlorophyll pair. The light induced excited state of the special pair producing P<sub>840</sub><sup>+</sup> is rapidly reduced by electron transfer from one of the two PscC subunits. Molecular dynamics (MD) simulations are combined with bioinformatic tools herein to provide structural and dynamic insight into the complex between the two PscA core proteins and the two PscC subunits. The microscopic dynamic model involves extensive sampling at atomic resolution and at a cumulative time-scale of 22µs and reveals well defined protein–protein interactions. The membrane complex is composed of the two PscA and the two PscC subunits and macroscopic connections are revealed within a putative electron transfer pathway from the PscC subunit to the special pair P<sub>840</sub> located within the PscA subunits. Our results provide a structural basis for understanding the electron transport to the homodimer RC of the green sulfur bacteria. The MD based approach can provide the basis to further probe the PscA-PscC complex dynamics and observe electron transfer therein at the quantum level. Furthermore, the transmembrane helices of the different PscC subunits exert distinct dynamics in the complex.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-024-01093-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The primary photochemical reaction of photosynthesis in green sulfur bacteria occurs in the homodimer PscA core proteins by a special chlorophyll pair. The light induced excited state of the special pair producing P840+ is rapidly reduced by electron transfer from one of the two PscC subunits. Molecular dynamics (MD) simulations are combined with bioinformatic tools herein to provide structural and dynamic insight into the complex between the two PscA core proteins and the two PscC subunits. The microscopic dynamic model involves extensive sampling at atomic resolution and at a cumulative time-scale of 22µs and reveals well defined protein–protein interactions. The membrane complex is composed of the two PscA and the two PscC subunits and macroscopic connections are revealed within a putative electron transfer pathway from the PscC subunit to the special pair P840 located within the PscA subunits. Our results provide a structural basis for understanding the electron transport to the homodimer RC of the green sulfur bacteria. The MD based approach can provide the basis to further probe the PscA-PscC complex dynamics and observe electron transfer therein at the quantum level. Furthermore, the transmembrane helices of the different PscC subunits exert distinct dynamics in the complex.

Abstract Image

氯杆菌中 PscC 亚基与 P840 特殊对的电子传递之间的协同作用
绿色硫细菌光合作用的主要光化学反应发生在同源二聚体 PscA 核心蛋白中的一对特殊叶绿素上。产生 P840+ 的特殊叶绿素对的光诱导激发态通过两个 PscC 亚基之一的电子转移迅速还原。本文将分子动力学(MD)模拟与生物信息学工具相结合,对两个 PscA 核心蛋白和两个 PscC 亚基之间的复合物进行了结构和动态研究。微观动态模型包括原子分辨率和 22µs 累计时间尺度的广泛采样,并揭示了明确的蛋白质-蛋白质相互作用。膜复合体由两个 PscA 和两个 PscC 亚基组成,从 PscC 亚基到位于 PscA 亚基内的特殊配对 P840 的推定电子传递途径中揭示了宏观联系。我们的研究结果为理解绿色硫细菌同源二聚体 RC 的电子传递提供了结构基础。基于 MD 的方法可以为进一步探究 PscA-PscC 复合物的动力学以及在量子水平上观察其中的电子传递提供基础。此外,不同 PscC 亚基的跨膜螺旋在复合物中发挥着不同的动力学作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photosynthesis Research
Photosynthesis Research 生物-植物科学
CiteScore
6.90
自引率
8.10%
发文量
91
审稿时长
4.5 months
期刊介绍: Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信