The Overexpression of Solanum nigrum Osmotin (SnOLP) Boosts Drought Response Pathways in Soybean

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"The Overexpression of Solanum nigrum Osmotin (SnOLP) Boosts Drought Response Pathways in Soybean","authors":"","doi":"10.1007/s11105-024-01452-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Environmental stresses are responsible for limiting soybean yield. To mitigate the impacts generated by water deficit, molecular biology tools are being used to develop genetically modified plants. Previous studies showed that two independent events (B1 and B3) of soybean transgenic plants expressing a <em>Solanum nigrum</em> osmotin (SnOLP) had an increment in drought tolerance. The present study aims to investigate the modulated pathways that results in the drought tolerance promoted by osmotin overexpression in soybean. Transgenic and non-transgenic (NT) plants in the vegetative stage were submitted to water deficit by irrigation suppression for seven days. Control plants were kept irrigated. Physiological variables were monitored and confirmed that the transgenic plants present better performance when compared to the NT plants. The total RNA extracted from leaves was sequenced and data was normalized by DESeq2. A total of 2044 and 1505 differentially expressed genes (DEGs) were identified in B1 and B3 events, respectively. Regarding the B1 event, 769 genes were upregulated and 1275 downregulated. For B3, 541 genes were upregulated and 964 genes were downregulated. Excluding common differentially expressed genes (DEGs) between transgenic and non-transgenic (NT) plants yielded 395 upregulated and 234 downregulated genes, which were shared by B1 and B3 events. The metabolic pathways and gene ontology categories identified are known to be involved in plant responses to drought. Hormonal, photosynthetic, carbohydrate and amino acid metabolism, reactive oxygen species, and post-translational modifications pathways were significantly modulated in transgenic plants. Altogether, the results suggest that osmotin promotes tolerance through an increment in the plant responses elicited by drought. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01452-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental stresses are responsible for limiting soybean yield. To mitigate the impacts generated by water deficit, molecular biology tools are being used to develop genetically modified plants. Previous studies showed that two independent events (B1 and B3) of soybean transgenic plants expressing a Solanum nigrum osmotin (SnOLP) had an increment in drought tolerance. The present study aims to investigate the modulated pathways that results in the drought tolerance promoted by osmotin overexpression in soybean. Transgenic and non-transgenic (NT) plants in the vegetative stage were submitted to water deficit by irrigation suppression for seven days. Control plants were kept irrigated. Physiological variables were monitored and confirmed that the transgenic plants present better performance when compared to the NT plants. The total RNA extracted from leaves was sequenced and data was normalized by DESeq2. A total of 2044 and 1505 differentially expressed genes (DEGs) were identified in B1 and B3 events, respectively. Regarding the B1 event, 769 genes were upregulated and 1275 downregulated. For B3, 541 genes were upregulated and 964 genes were downregulated. Excluding common differentially expressed genes (DEGs) between transgenic and non-transgenic (NT) plants yielded 395 upregulated and 234 downregulated genes, which were shared by B1 and B3 events. The metabolic pathways and gene ontology categories identified are known to be involved in plant responses to drought. Hormonal, photosynthetic, carbohydrate and amino acid metabolism, reactive oxygen species, and post-translational modifications pathways were significantly modulated in transgenic plants. Altogether, the results suggest that osmotin promotes tolerance through an increment in the plant responses elicited by drought.

黑茄科植物 Osmotin (SnOLP) 的过表达可促进大豆的干旱响应途径
摘要 环境胁迫是限制大豆产量的原因。为了减轻缺水造成的影响,人们正在利用分子生物学工具来培育转基因植物。先前的研究表明,表达黑茄科植物渗透蛋白(SnOLP)的大豆转基因植物的两个独立事件(B1 和 B3)具有更强的抗旱性。本研究旨在探讨大豆过表达渗透蛋白促进耐旱性的调节途径。转基因和非转基因(NT)植株在无性期通过抑制灌溉使其缺水七天。对照植物保持灌溉。对生理变量进行了监测,结果表明转基因植株的表现优于非转基因植株。对从叶片中提取的总 RNA 进行测序,并用 DESeq2 对数据进行归一化处理。在 B1 和 B3 事件中分别发现了 2044 和 1505 个差异表达基因(DEGs)。在 B1 事件中,769 个基因上调,1275 个基因下调。在 B3 事件中,541 个基因上调,964 个基因下调。剔除转基因植物和非转基因植物之间共同的差异表达基因(DEGs)后,B1 和 B3 事件共有 395 个上调基因和 234 个下调基因。已确定的代谢途径和基因本体类别涉及植物对干旱的反应。转基因植物的激素、光合作用、碳水化合物和氨基酸代谢、活性氧和翻译后修饰途径都受到了显著调控。总之,研究结果表明,渗透蛋白通过增加植物对干旱的反应来促进植物的耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信