Andreas Padalkin, Christian Scheideler, Daniel Warner
{"title":"The structural power of reconfigurable circuits in the amoebot model","authors":"Andreas Padalkin, Christian Scheideler, Daniel Warner","doi":"10.1007/s11047-024-09981-6","DOIUrl":null,"url":null,"abstract":"<p>The <i>amoebot model</i> (Derakhshandeh et al. in: SPAA ACM, pp 220–222. https://doi.org/10.1145/2612669.2612712, 2014) has been proposed as a model for programmable matter consisting of tiny, robotic elements called <i>amoebots</i>. We consider the <i>reconfigurable circuit extension</i> (Feldmann et al. in J Comput Biol 29(4):317–343. https://doi.org/10.1089/cmb.2021.0363, 2022) of the geometric amoebot model that allows the amoebot structure to interconnect amoebots by so-called <i>circuits</i>. A circuit permits the instantaneous transmission of signals between the connected amoebots. In this paper, we examine the structural power of the reconfigurable circuits. We start with fundamental problems like the <i>stripe computation problem</i> where, given any connected amoebot structure <i>S</i>, an amoebot <i>u</i> in <i>S</i>, and some axis <i>X</i>, all amoebots belonging to axis <i>X</i> through <i>u</i> have to be identified. Second, we consider the <i>global maximum problem</i>, which identifies an amoebot at the highest possible position with respect to some direction in some given amoebot (sub)structure. A solution to this problem can be used to solve the <i>skeleton problem</i>, where a cycle of amoebots has to be found in the given amoebot structure which contains all boundary amoebots. A canonical solution to that problem can be used to come up with a canonical path, which provides a unique characterization of the shape of the given amoebot structure. Constructing canonical paths for different directions allows the amoebots to set up a spanning tree and to check symmetry properties of the given amoebot structure. The problems are important for a number of applications like rapid shape transformation, energy dissemination, and structural monitoring. Interestingly, the reconfigurable circuit extension allows polylogarithmic-time solutions to all of these problems.</p>","PeriodicalId":49783,"journal":{"name":"Natural Computing","volume":"117 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11047-024-09981-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The amoebot model (Derakhshandeh et al. in: SPAA ACM, pp 220–222. https://doi.org/10.1145/2612669.2612712, 2014) has been proposed as a model for programmable matter consisting of tiny, robotic elements called amoebots. We consider the reconfigurable circuit extension (Feldmann et al. in J Comput Biol 29(4):317–343. https://doi.org/10.1089/cmb.2021.0363, 2022) of the geometric amoebot model that allows the amoebot structure to interconnect amoebots by so-called circuits. A circuit permits the instantaneous transmission of signals between the connected amoebots. In this paper, we examine the structural power of the reconfigurable circuits. We start with fundamental problems like the stripe computation problem where, given any connected amoebot structure S, an amoebot u in S, and some axis X, all amoebots belonging to axis X through u have to be identified. Second, we consider the global maximum problem, which identifies an amoebot at the highest possible position with respect to some direction in some given amoebot (sub)structure. A solution to this problem can be used to solve the skeleton problem, where a cycle of amoebots has to be found in the given amoebot structure which contains all boundary amoebots. A canonical solution to that problem can be used to come up with a canonical path, which provides a unique characterization of the shape of the given amoebot structure. Constructing canonical paths for different directions allows the amoebots to set up a spanning tree and to check symmetry properties of the given amoebot structure. The problems are important for a number of applications like rapid shape transformation, energy dissemination, and structural monitoring. Interestingly, the reconfigurable circuit extension allows polylogarithmic-time solutions to all of these problems.
期刊介绍:
The journal is soliciting papers on all aspects of natural computing. Because of the interdisciplinary character of the journal a special effort will be made to solicit survey, review, and tutorial papers which would make research trends in a given subarea more accessible to the broad audience of the journal.