Self-replication via tile self-assembly

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Self-replication via tile self-assembly","authors":"","doi":"10.1007/s11047-023-09971-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper we present a model containing modifications to the Signal-passing Tile Assembly Model (STAM), a tile-based self-assembly model whose tiles are capable of activating and deactivating glues based on the binding of other glues. These modifications consist of an extension to 3D, the ability of tiles to form “flexible” bonds that allow bound tiles to rotate relative to each other, and allowing tiles of multiple shapes within the same system. We call this new model the STAM*, and we present a series of constructions within it that are capable of self-replicating behavior. Namely, the input seed assemblies to our STAM* systems can encode either “genomes” specifying the instructions for building a target shape, or can be copies of the target shape with instructions built in. A universal tile set exists for any target shape (at scale factor 2), and from a genome assembly creates infinite copies of the genome as well as the target shape. An input target structure, on the other hand, can be “deconstructed” by the universal tile set to form a genome encoding it, which will then replicate and also initiate the growth of copies of assemblies of the target shape. Since the lengths of the genomes for these constructions are proportional to the number of points in the target shape, we also present a replicator which utilizes hierarchical self-assembly to greatly reduce the size of the genomes required. The main goals of this work are to examine minimal requirements of self-assembling systems capable of self-replicating behavior, with the aim of better understanding self-replication in nature as well as understanding the complexity of mimicking it.</p>","PeriodicalId":49783,"journal":{"name":"Natural Computing","volume":"117 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11047-023-09971-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a model containing modifications to the Signal-passing Tile Assembly Model (STAM), a tile-based self-assembly model whose tiles are capable of activating and deactivating glues based on the binding of other glues. These modifications consist of an extension to 3D, the ability of tiles to form “flexible” bonds that allow bound tiles to rotate relative to each other, and allowing tiles of multiple shapes within the same system. We call this new model the STAM*, and we present a series of constructions within it that are capable of self-replicating behavior. Namely, the input seed assemblies to our STAM* systems can encode either “genomes” specifying the instructions for building a target shape, or can be copies of the target shape with instructions built in. A universal tile set exists for any target shape (at scale factor 2), and from a genome assembly creates infinite copies of the genome as well as the target shape. An input target structure, on the other hand, can be “deconstructed” by the universal tile set to form a genome encoding it, which will then replicate and also initiate the growth of copies of assemblies of the target shape. Since the lengths of the genomes for these constructions are proportional to the number of points in the target shape, we also present a replicator which utilizes hierarchical self-assembly to greatly reduce the size of the genomes required. The main goals of this work are to examine minimal requirements of self-assembling systems capable of self-replicating behavior, with the aim of better understanding self-replication in nature as well as understanding the complexity of mimicking it.

通过瓦片自组装实现自我复制
摘要 本文介绍了一个模型,其中包含对信号传递瓦片组装模型(STAM)的修改。STAM 是一种基于瓦片的自组装模型,其瓦片能够根据其他瓦片的结合激活和停用胶合剂。这些修改包括:扩展到三维空间,瓦片能够形成 "灵活 "的粘合,使绑定的瓦片能够相对旋转,并允许同一系统中的瓦片具有多种形状。我们将这种新模型称为 STAM*,并在其中提出了一系列能够自我复制的构造。也就是说,STAM*系统的输入种子组件既可以编码 "基因组",指明构建目标形状的指令,也可以是目标形状的副本,内置指令。通用瓦片集适用于任何目标形状(比例因子为 2),通过基因组装配可创建无限的基因组副本和目标形状副本。另一方面,输入的目标结构可以通过通用瓦片集进行 "解构",形成编码它的基因组,然后进行复制,同时启动目标形状的装配副本的增长。由于这些结构的基因组长度与目标形状的点数成正比,我们还提出了一种复制器,它利用分层自组装大大减少了所需基因组的大小。这项工作的主要目标是研究能够进行自我复制行为的自组装系统的最低要求,目的是更好地理解自然界中的自我复制以及模仿它的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Computing
Natural Computing Computer Science-Computer Science Applications
CiteScore
4.40
自引率
4.80%
发文量
49
审稿时长
3 months
期刊介绍: The journal is soliciting papers on all aspects of natural computing. Because of the interdisciplinary character of the journal a special effort will be made to solicit survey, review, and tutorial papers which would make research trends in a given subarea more accessible to the broad audience of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信