{"title":"Machine Learning Driven Developments in Behavioral Annotation: A Recent Historical Review","authors":"Eleanor Watson, Thiago Viana, Shujun Zhang","doi":"10.1007/s12369-024-01117-1","DOIUrl":null,"url":null,"abstract":"<p>Annotation tools serve a critical role in the generation of datasets that fuel machine learning applications. With the advent of Foundation Models, particularly those based on Transformer architectures and expansive language models, the capacity for training on comprehensive, multimodal datasets has been substantially enhanced. This not only facilitates robust generalization across diverse data categories and knowledge domains but also necessitates a novel form of annotation—prompt engineering—for qualitative model fine-tuning. This advancement creates new avenues for machine intelligence to more precisely identify, forecast, and replicate human behavior, addressing historical limitations that contribute to algorithmic inequities. Nevertheless, the voluminous and intricate nature of the data essential for training multimodal models poses significant engineering challenges, particularly with regard to bias. No consensus has yet emerged on optimal procedures for conducting this annotation work in a manner that is ethically responsible, secure, and efficient. This historical literature review traces advancements in these technologies from 2018 onward, underscores significant contributions, and identifies existing knowledge gaps and avenues for future research pertinent to the development of Transformer-based multimodal Foundation Models. An initial survey of over 724 articles yielded 156 studies that met the criteria for historical analysis; these were further narrowed down to 46 key papers spanning the years 2018–2022. The review offers valuable perspectives on the evolution of best practices, pinpoints current knowledge deficiencies, and suggests potential directions for future research. The paper includes six figures and delves into the transformation of research landscapes in the realm of machine-assisted behavioral annotation, focusing on critical issues such as bias.</p>","PeriodicalId":14361,"journal":{"name":"International Journal of Social Robotics","volume":"42 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12369-024-01117-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Annotation tools serve a critical role in the generation of datasets that fuel machine learning applications. With the advent of Foundation Models, particularly those based on Transformer architectures and expansive language models, the capacity for training on comprehensive, multimodal datasets has been substantially enhanced. This not only facilitates robust generalization across diverse data categories and knowledge domains but also necessitates a novel form of annotation—prompt engineering—for qualitative model fine-tuning. This advancement creates new avenues for machine intelligence to more precisely identify, forecast, and replicate human behavior, addressing historical limitations that contribute to algorithmic inequities. Nevertheless, the voluminous and intricate nature of the data essential for training multimodal models poses significant engineering challenges, particularly with regard to bias. No consensus has yet emerged on optimal procedures for conducting this annotation work in a manner that is ethically responsible, secure, and efficient. This historical literature review traces advancements in these technologies from 2018 onward, underscores significant contributions, and identifies existing knowledge gaps and avenues for future research pertinent to the development of Transformer-based multimodal Foundation Models. An initial survey of over 724 articles yielded 156 studies that met the criteria for historical analysis; these were further narrowed down to 46 key papers spanning the years 2018–2022. The review offers valuable perspectives on the evolution of best practices, pinpoints current knowledge deficiencies, and suggests potential directions for future research. The paper includes six figures and delves into the transformation of research landscapes in the realm of machine-assisted behavioral annotation, focusing on critical issues such as bias.
期刊介绍:
Social Robotics is the study of robots that are able to interact and communicate among themselves, with humans, and with the environment, within the social and cultural structure attached to its role. The journal covers a broad spectrum of topics related to the latest technologies, new research results and developments in the area of social robotics on all levels, from developments in core enabling technologies to system integration, aesthetic design, applications and social implications. It provides a platform for like-minded researchers to present their findings and latest developments in social robotics, covering relevant advances in engineering, computing, arts and social sciences.
The journal publishes original, peer reviewed articles and contributions on innovative ideas and concepts, new discoveries and improvements, as well as novel applications, by leading researchers and developers regarding the latest fundamental advances in the core technologies that form the backbone of social robotics, distinguished developmental projects in the area, as well as seminal works in aesthetic design, ethics and philosophy, studies on social impact and influence, pertaining to social robotics.