{"title":"Brain-inspired spiking neural networks in Engineering Mechanics: a new physics-based self-learning framework for sustainable Finite Element analysis","authors":"Saurabh Balkrishna Tandale, Marcus Stoffel","doi":"10.1007/s00366-024-01967-3","DOIUrl":null,"url":null,"abstract":"<p>The present study aims to develop a sustainable framework employing brain-inspired neural networks for solving boundary value problems in Engineering Mechanics. Spiking neural networks, known as the third generation of artificial neural networks, are proposed for physics-based artificial intelligence. Accompanied by a new pseudo-explicit integration scheme based on spiking recurrent neural networks leading to a spike-based pseudo explicit integration scheme, the underlying differential equations are solved with a physics-informed strategy. We propose additionally a third-generation spike-based Legendre Memory Unit that handles large sequences. These third-generation networks can be implemented on the coming-of-age neuromorphic hardware resulting in less energy and memory consumption. The proposed framework, although implicit, is viewed as a pseudo-explicit scheme since it requires almost no or fewer online training steps to achieve a converged solution even for unseen loading sequences. The proposed framework is deployed in a Finite Element solver for plate structures undergoing cyclic loading and a Xylo-Av2 SynSense neuromorphic chip is used to assess its energy performance. An acceleration of more than 40% when compared to classical Finite Element Method simulations and the capability of online training is observed. We also see a reduction in energy consumption down to the thousandth order.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"11 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01967-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aims to develop a sustainable framework employing brain-inspired neural networks for solving boundary value problems in Engineering Mechanics. Spiking neural networks, known as the third generation of artificial neural networks, are proposed for physics-based artificial intelligence. Accompanied by a new pseudo-explicit integration scheme based on spiking recurrent neural networks leading to a spike-based pseudo explicit integration scheme, the underlying differential equations are solved with a physics-informed strategy. We propose additionally a third-generation spike-based Legendre Memory Unit that handles large sequences. These third-generation networks can be implemented on the coming-of-age neuromorphic hardware resulting in less energy and memory consumption. The proposed framework, although implicit, is viewed as a pseudo-explicit scheme since it requires almost no or fewer online training steps to achieve a converged solution even for unseen loading sequences. The proposed framework is deployed in a Finite Element solver for plate structures undergoing cyclic loading and a Xylo-Av2 SynSense neuromorphic chip is used to assess its energy performance. An acceleration of more than 40% when compared to classical Finite Element Method simulations and the capability of online training is observed. We also see a reduction in energy consumption down to the thousandth order.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.