{"title":"Multiscale modelling of particulate composites with spherical inclusions","authors":"Abdalla Elbana, Amar Khennane, Paul J. Hazell","doi":"10.1007/s00366-024-01954-8","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel and effective strategy for modelling three-dimensional periodic representative volume elements (RVE) of particulate composites. The proposed method aims to generate an RVE that can represent the microstructure of particulate composites with hollow spherical inclusions for homogenization (e.g., deriving the full-field effective elastic properties). The RVE features periodic and randomised geometry suitable for the application of periodic boundary conditions in finite element analysis. A robust algorithm is introduced following the combined theories of Monte Carlo and collision driven molecular dynamics to pack spherical particles in random spatial positions within the RVE. This novel technique can achieve a high particle-matrix volume ratio of up to 50% while still maintaining geometric periodicity across the domain and random distribution of inclusions within the RVE. Another algorithm is established to apply periodic boundary conditions (PBC) to precisely generate full field elastic properties of such microstructures. Furthermore, a user-friendly automatic ABAQUS CAE plug-in tool ‘<b>Gen_PRVE</b>’ is developed to generate three-dimensional RVE of any spherical particulate composite or porous material. <b>Gen_PRVE</b> provides users with a great deal of flexibility to generate Representative Volume Elements (RVEs) with varying side dimensions, sphere sizes, and periodic mesh resolutions. In addition, this tool can be effectively utilized to conduct a rapid mesh convergence study, an RVE size sensitivity study, and investigate the impact of inclusion/matrix volume fraction on the solution. Lastly, examples of these applications are presented.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01954-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel and effective strategy for modelling three-dimensional periodic representative volume elements (RVE) of particulate composites. The proposed method aims to generate an RVE that can represent the microstructure of particulate composites with hollow spherical inclusions for homogenization (e.g., deriving the full-field effective elastic properties). The RVE features periodic and randomised geometry suitable for the application of periodic boundary conditions in finite element analysis. A robust algorithm is introduced following the combined theories of Monte Carlo and collision driven molecular dynamics to pack spherical particles in random spatial positions within the RVE. This novel technique can achieve a high particle-matrix volume ratio of up to 50% while still maintaining geometric periodicity across the domain and random distribution of inclusions within the RVE. Another algorithm is established to apply periodic boundary conditions (PBC) to precisely generate full field elastic properties of such microstructures. Furthermore, a user-friendly automatic ABAQUS CAE plug-in tool ‘Gen_PRVE’ is developed to generate three-dimensional RVE of any spherical particulate composite or porous material. Gen_PRVE provides users with a great deal of flexibility to generate Representative Volume Elements (RVEs) with varying side dimensions, sphere sizes, and periodic mesh resolutions. In addition, this tool can be effectively utilized to conduct a rapid mesh convergence study, an RVE size sensitivity study, and investigate the impact of inclusion/matrix volume fraction on the solution. Lastly, examples of these applications are presented.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.