Myeong-Seok Go, Young-Bae Kim, Jeong-Hoon Park, Jae Hyuk Lim, Jin-Gyun Kim
{"title":"A rapidly trained DNN model for real-time flexible multibody dynamics simulations with a fixed-time increment","authors":"Myeong-Seok Go, Young-Bae Kim, Jeong-Hoon Park, Jae Hyuk Lim, Jin-Gyun Kim","doi":"10.1007/s00366-024-01962-8","DOIUrl":null,"url":null,"abstract":"<p>This study presents an efficient fixed-time increment-based approach for a data-driven analysis of flexible multibody dynamics (FMBD) problems, combining deep neural network (DNN) modeling and principal component analysis (PCA). To construct a DNN-based surrogate model, we eliminated the time instant in the input features while applying PCA to reduce the dimensionality of the output results, which encompassed transient dynamics such as displacement, stress, and strain. This restructuring allowed us to maintain the temporal information in the output data set while still formatting it in a fixed-time increment format, streamlining the process of training an efficient DNN model. Despite using fewer samples, this approach significantly reduces training costs compared to DNN model without PCA. Benchmark problems, including a double compound pendulum, piston-cylinder system, and deployable parabolic antenna, demonstrate that the proposed scheme drastically reduces training time while maintaining accuracy and quick prediction time.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01962-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an efficient fixed-time increment-based approach for a data-driven analysis of flexible multibody dynamics (FMBD) problems, combining deep neural network (DNN) modeling and principal component analysis (PCA). To construct a DNN-based surrogate model, we eliminated the time instant in the input features while applying PCA to reduce the dimensionality of the output results, which encompassed transient dynamics such as displacement, stress, and strain. This restructuring allowed us to maintain the temporal information in the output data set while still formatting it in a fixed-time increment format, streamlining the process of training an efficient DNN model. Despite using fewer samples, this approach significantly reduces training costs compared to DNN model without PCA. Benchmark problems, including a double compound pendulum, piston-cylinder system, and deployable parabolic antenna, demonstrate that the proposed scheme drastically reduces training time while maintaining accuracy and quick prediction time.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.