Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, Anima Anandkumar
{"title":"Neural operators for accelerating scientific simulations and design","authors":"Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, Anima Anandkumar","doi":"10.1038/s42254-024-00712-5","DOIUrl":null,"url":null,"abstract":"Scientific discovery and engineering design are currently limited by the time and cost of physical experiments. Numerical simulations are an alternative approach but are usually intractable for complex real-world problems. Artificial intelligence promises a solution through fast data-driven surrogate models. In particular, neural operators present a principled framework for learning mappings between functions defined on continuous domains, such as spatiotemporal processes and partial differential equations. Neural operators can extrapolate and predict solutions at new locations unseen during training. They can be integrated with physics and other domain constraints enforced at finer resolutions to obtain high-fidelity solutions and good generalization. Neural operators are differentiable, so they can directly optimize parameters for inverse design and other inverse problems. Neural operators can therefore augment, or even replace, existing numerical simulators in many applications, such as computational fluid dynamics, weather forecasting and material modelling, providing speedups of four to five orders of magnitude. Neural operators learn mappings between functions on continuous domains, such as spatiotemporal processes and partial differential equations, offering a fast, data-driven surrogate model solution for otherwise intractable numerical simulations of complex real-world problems.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 5","pages":"320-328"},"PeriodicalIF":44.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00712-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Scientific discovery and engineering design are currently limited by the time and cost of physical experiments. Numerical simulations are an alternative approach but are usually intractable for complex real-world problems. Artificial intelligence promises a solution through fast data-driven surrogate models. In particular, neural operators present a principled framework for learning mappings between functions defined on continuous domains, such as spatiotemporal processes and partial differential equations. Neural operators can extrapolate and predict solutions at new locations unseen during training. They can be integrated with physics and other domain constraints enforced at finer resolutions to obtain high-fidelity solutions and good generalization. Neural operators are differentiable, so they can directly optimize parameters for inverse design and other inverse problems. Neural operators can therefore augment, or even replace, existing numerical simulators in many applications, such as computational fluid dynamics, weather forecasting and material modelling, providing speedups of four to five orders of magnitude. Neural operators learn mappings between functions on continuous domains, such as spatiotemporal processes and partial differential equations, offering a fast, data-driven surrogate model solution for otherwise intractable numerical simulations of complex real-world problems.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.