Cut-PFEM: a Particle Finite Element Method using unfitted boundary meshes

IF 8.7 2区 工程技术 Q1 Mathematics
Rubén Zorrilla, Alessandro Franci
{"title":"Cut-PFEM: a Particle Finite Element Method using unfitted boundary meshes","authors":"Rubén Zorrilla, Alessandro Franci","doi":"10.1007/s00366-024-01956-6","DOIUrl":null,"url":null,"abstract":"<p>In this work, we present a novel unfitted mesh boundary strategy in the context of the Particle Finite Flement Method (PFEM) aiming to improve endemic limitations of the PFEM relative to boundary conditions treatment and mass conservation. In this new methodology, which we called Cut-PFEM, the fluid–wall interaction is not performed by adding interface elements, as is done in the standard PFEM boundaries. Instead, we use an implicit representation of (all or some of) the boundaries by introducing the use of a level set function. Such distance function detects the elements trespassing the (virtual) contours of the domain to equip them with opportunely boundary conditions, which are variationally enforced using Nitsche’s method. The proposed Cut-PFEM circumvents important issues associated with the standard PFEM contact detection algorithm, such as the artificial addition of mass to the computational domain and the anticipation of contact time. Furthermore, the Cut-PFEM represents a natural ground for the imposition of alternative wall boundary conditions (<i>e.g.</i>, pure slip) which pose significant difficulties in a standard PFEM framework. Several numerical examples, featuring both no-slip and slip boundary conditions, are presented to prove the accuracy and robustness of the method in two-dimensional and three-dimensional scenarios.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"51 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-01956-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a novel unfitted mesh boundary strategy in the context of the Particle Finite Flement Method (PFEM) aiming to improve endemic limitations of the PFEM relative to boundary conditions treatment and mass conservation. In this new methodology, which we called Cut-PFEM, the fluid–wall interaction is not performed by adding interface elements, as is done in the standard PFEM boundaries. Instead, we use an implicit representation of (all or some of) the boundaries by introducing the use of a level set function. Such distance function detects the elements trespassing the (virtual) contours of the domain to equip them with opportunely boundary conditions, which are variationally enforced using Nitsche’s method. The proposed Cut-PFEM circumvents important issues associated with the standard PFEM contact detection algorithm, such as the artificial addition of mass to the computational domain and the anticipation of contact time. Furthermore, the Cut-PFEM represents a natural ground for the imposition of alternative wall boundary conditions (e.g., pure slip) which pose significant difficulties in a standard PFEM framework. Several numerical examples, featuring both no-slip and slip boundary conditions, are presented to prove the accuracy and robustness of the method in two-dimensional and three-dimensional scenarios.

Abstract Image

Cut-PFEM:使用非拟合边界网格的粒子有限元方法
在这项工作中,我们在粒子有限元法(PFEM)的背景下提出了一种新的非拟合网格边界策略,旨在改善粒子有限元法在边界条件处理和质量守恒方面的局限性。我们将这种新方法称为 "切割-PFEM",它不像标准 PFEM 边界那样通过添加界面元素来实现流体与壁面的相互作用。相反,我们通过引入使用水平集函数来隐式表示(全部或部分)边界。这种距离函数可以检测到侵入域(虚拟)轮廓的元素,从而为它们配备合适的边界条件,这些边界条件通过尼采方法可变地执行。所提出的剪切-PFEM 避开了与标准 PFEM 接触检测算法相关的重要问题,如人为增加计算域质量和预计接触时间。此外,Cut-PFEM 是施加替代壁边界条件(如纯滑移)的自然基础,而这些条件在标准 PFEM 框架中会造成很大困难。本文介绍了几个以无滑移和滑移边界条件为特征的数值示例,以证明该方法在二维和三维场景中的准确性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering with Computers
Engineering with Computers 工程技术-工程:机械
CiteScore
16.50
自引率
2.30%
发文量
203
审稿时长
9 months
期刊介绍: Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信