Identification and forecasting of bull and bear markets using multivariate returns

IF 2.3 3区 经济学 Q2 ECONOMICS
Jia Liu, John M. Maheu, Yong Song
{"title":"Identification and forecasting of bull and bear markets using multivariate returns","authors":"Jia Liu,&nbsp;John M. Maheu,&nbsp;Yong Song","doi":"10.1002/jae.3048","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bull and bear market identification generally focuses on a broad index of returns through a univariate analysis. This paper proposes a new approach to identify and forecast bull and bear markets through multivariate returns. The model assumes that all assets are directed by a common discrete state variable from a hierarchical Markov switching model. The hierarchical specification allows the cross-section of state-specific means and variances to differ over bull and bear markets. We investigate several empirically realistic specifications that permit feasible estimation even with 100 assets. Our results show that the multivariate framework provides competitive bull and bear regime identification and improves portfolio performance and density prediction compared with several benchmark models including univariate Markov switching models.</p>\n </div>","PeriodicalId":48363,"journal":{"name":"Journal of Applied Econometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jae.3048","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bull and bear market identification generally focuses on a broad index of returns through a univariate analysis. This paper proposes a new approach to identify and forecast bull and bear markets through multivariate returns. The model assumes that all assets are directed by a common discrete state variable from a hierarchical Markov switching model. The hierarchical specification allows the cross-section of state-specific means and variances to differ over bull and bear markets. We investigate several empirically realistic specifications that permit feasible estimation even with 100 assets. Our results show that the multivariate framework provides competitive bull and bear regime identification and improves portfolio performance and density prediction compared with several benchmark models including univariate Markov switching models.

利用多元收益率识别和预测牛市和熊市
摘要牛市和熊市的识别通常侧重于通过单变量分析来确定收益率的宽泛指数。本文提出了一种新方法,通过多变量收益率来识别和预测牛市和熊市。该模型假定所有资产都由分层马尔可夫转换模型中的一个共同离散状态变量引导。分层规范允许特定状态均值和方差的横截面在牛市和熊市中有所不同。我们研究了几种符合实际经验的规范,这些规范允许对 100 种资产进行可行的估计。我们的结果表明,与包括单变量马尔科夫切换模型在内的几个基准模型相比,多变量框架提供了有竞争力的牛市和熊市制度识别,并改善了投资组合的绩效和密度预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
63
期刊介绍: The Journal of Applied Econometrics is an international journal published bi-monthly, plus 1 additional issue (total 7 issues). It aims to publish articles of high quality dealing with the application of existing as well as new econometric techniques to a wide variety of problems in economics and related subjects, covering topics in measurement, estimation, testing, forecasting, and policy analysis. The emphasis is on the careful and rigorous application of econometric techniques and the appropriate interpretation of the results. The economic content of the articles is stressed. A special feature of the Journal is its emphasis on the replicability of results by other researchers. To achieve this aim, authors are expected to make available a complete set of the data used as well as any specialised computer programs employed through a readily accessible medium, preferably in a machine-readable form. The use of microcomputers in applied research and transferability of data is emphasised. The Journal also features occasional sections of short papers re-evaluating previously published papers. The intention of the Journal of Applied Econometrics is to provide an outlet for innovative, quantitative research in economics which cuts across areas of specialisation, involves transferable techniques, and is easily replicable by other researchers. Contributions that introduce statistical methods that are applicable to a variety of economic problems are actively encouraged. The Journal also aims to publish review and survey articles that make recent developments in the field of theoretical and applied econometrics more readily accessible to applied economists in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信