Sarah Moreno, Michelle Massee, Shauna Campbell, Heather Bara, Thomas J Koob, John R Harper
{"title":"PURION® processed human amnion chorion membrane allografts retain material and biological properties supportive of soft tissue repair","authors":"Sarah Moreno, Michelle Massee, Shauna Campbell, Heather Bara, Thomas J Koob, John R Harper","doi":"10.1177/08853282241246034","DOIUrl":null,"url":null,"abstract":"The reparative properties of amniotic membrane allografts are well-suited for a broad spectrum of specialties. Further enhancement of their utility can be achieved by designing to the needs of each application through the development of novel processing techniques and tissue configurations. As such, this study evaluated the material characteristics and biological properties of two PURION<jats:sup>®</jats:sup> processed amniotic membrane products, a lyophilized human amnion, intermediate layer, and chorion membrane (LHACM) and a dehydrated human amnion, chorion membrane (DHACM). LHACM is thicker; therefore, its handling properties are ideal for deep, soft tissue deficits; whereas DHACM is more similar to a film-like overlay and may be used for shallow defects or surgical on-lays. Characterization of the similarities and differences between LHACM and DHACM was conducted through a series of in vitro and in vivo studies relevant to the healing cascade. Compositional analysis was performed through histological staining along with assessment of barrier membrane properties through equilibrium dialysis. In vitro cellular response was assessed in fibroblasts and endothelial cells using cell proliferation, migration, and metabolic assays. The in vivo cellular response was assessed in an athymic nude mouse subcutaneous implantation model. The results indicated the PURION<jats:sup>®</jats:sup> process preserved the native membrane structure, nonviable cells and collagen distributed in the individual layers of both products. Although, LHACM is thicker than DHACM, a similar composition of growth factors, cytokines, chemokines and proteases is retained and consequently elicit comparable in vitro and in vivo cellular responses. In culture, both treatments behaved as potent mitogens, chemoattractants and stimulants, which translated to the promotion of cellular infiltration, neocollagen deposition and angiogenesis in a murine model. PURION<jats:sup>®</jats:sup> processed LHACM and DHACM differ in physical properties but possess similar in vitro and in vivo activities highlighting the impact of processing method on the versatility of clinical use of amniotic membrane allografts.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"49 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241246034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The reparative properties of amniotic membrane allografts are well-suited for a broad spectrum of specialties. Further enhancement of their utility can be achieved by designing to the needs of each application through the development of novel processing techniques and tissue configurations. As such, this study evaluated the material characteristics and biological properties of two PURION® processed amniotic membrane products, a lyophilized human amnion, intermediate layer, and chorion membrane (LHACM) and a dehydrated human amnion, chorion membrane (DHACM). LHACM is thicker; therefore, its handling properties are ideal for deep, soft tissue deficits; whereas DHACM is more similar to a film-like overlay and may be used for shallow defects or surgical on-lays. Characterization of the similarities and differences between LHACM and DHACM was conducted through a series of in vitro and in vivo studies relevant to the healing cascade. Compositional analysis was performed through histological staining along with assessment of barrier membrane properties through equilibrium dialysis. In vitro cellular response was assessed in fibroblasts and endothelial cells using cell proliferation, migration, and metabolic assays. The in vivo cellular response was assessed in an athymic nude mouse subcutaneous implantation model. The results indicated the PURION® process preserved the native membrane structure, nonviable cells and collagen distributed in the individual layers of both products. Although, LHACM is thicker than DHACM, a similar composition of growth factors, cytokines, chemokines and proteases is retained and consequently elicit comparable in vitro and in vivo cellular responses. In culture, both treatments behaved as potent mitogens, chemoattractants and stimulants, which translated to the promotion of cellular infiltration, neocollagen deposition and angiogenesis in a murine model. PURION® processed LHACM and DHACM differ in physical properties but possess similar in vitro and in vivo activities highlighting the impact of processing method on the versatility of clinical use of amniotic membrane allografts.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.