Hierarchically porous surface of HA-sandblasted Ti implant screw using the plasma electrolytic oxidation: Physical characterization and biological responses
YoungEun Choe, Cheng Ji Li, Dong-Hyeon Yeo, Yu-Jin Kim, Jung-Hwan Lee, Hae-Hyoung Lee
{"title":"Hierarchically porous surface of HA-sandblasted Ti implant screw using the plasma electrolytic oxidation: Physical characterization and biological responses","authors":"YoungEun Choe, Cheng Ji Li, Dong-Hyeon Yeo, Yu-Jin Kim, Jung-Hwan Lee, Hae-Hyoung Lee","doi":"10.1177/08853282241246210","DOIUrl":null,"url":null,"abstract":"The surface topological features of bioimplants are among the key indicators for bone tissue replacement because they directly affect cell morphology, adhesion, proliferation, and differentiation. In this study, we investigated the physical, electrochemical, and biological responses of sandblasted titanium (SB-Ti) surfaces with pore geometries fabricated using a plasma electrolytic oxidation (PEO) process. The PEO treatment was conducted at an applied voltage of 280 V in a solution bath consisting of 0.15 mol L<jats:sup>−1</jats:sup> calcium acetate monohydrate and 0.02 mol L<jats:sup>−1</jats:sup> calcium glycerophosphate for 3 min. The surface chemistry, wettability, mechanical properties and corrosion behavior of PEO-treated sandblasted Ti implants using hydroxyapatite particles (PEO-SB-Ti) were improved with the distribution of calcium phosphorous porous oxide layers, and showed a homogeneous and hierarchically porous surface with clusters of nanopores in a bath containing calcium acetate monohydrate and calcium glycerophosphate. To demonstrate the efficacy of PEO-SB-Ti, we investigated whether the implant affects biological responses. The proposed PEO-SB-Ti were evaluated with the aim of obtaining a multifunctional bone replacement model that could efficiently induce osteogenic differentiation as well as antibacterial activities. These physical and biological responses suggest that the PEO-SB-Ti may have a great potential for use an artificial bone replacement compared to that of the controls.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"116 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241246210","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The surface topological features of bioimplants are among the key indicators for bone tissue replacement because they directly affect cell morphology, adhesion, proliferation, and differentiation. In this study, we investigated the physical, electrochemical, and biological responses of sandblasted titanium (SB-Ti) surfaces with pore geometries fabricated using a plasma electrolytic oxidation (PEO) process. The PEO treatment was conducted at an applied voltage of 280 V in a solution bath consisting of 0.15 mol L−1 calcium acetate monohydrate and 0.02 mol L−1 calcium glycerophosphate for 3 min. The surface chemistry, wettability, mechanical properties and corrosion behavior of PEO-treated sandblasted Ti implants using hydroxyapatite particles (PEO-SB-Ti) were improved with the distribution of calcium phosphorous porous oxide layers, and showed a homogeneous and hierarchically porous surface with clusters of nanopores in a bath containing calcium acetate monohydrate and calcium glycerophosphate. To demonstrate the efficacy of PEO-SB-Ti, we investigated whether the implant affects biological responses. The proposed PEO-SB-Ti were evaluated with the aim of obtaining a multifunctional bone replacement model that could efficiently induce osteogenic differentiation as well as antibacterial activities. These physical and biological responses suggest that the PEO-SB-Ti may have a great potential for use an artificial bone replacement compared to that of the controls.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.