Gordon Selling, Steven C. Cermak, James A. Kenar, Victoria L. Finkenstadt
{"title":"Preparation of Starch Coconut Fatty Acid Inclusion Complexes by Twin‐Screw Extrusion","authors":"Gordon Selling, Steven C. Cermak, James A. Kenar, Victoria L. Finkenstadt","doi":"10.1002/star.202300228","DOIUrl":null,"url":null,"abstract":"Starch‐guest molecule amylose inclusion complexes (AIC) are of interest to industry as a means to encapsulate and deliver compounds. Coconut fatty acids (CFA) consist predominantly of medium chain fatty acids having useful food and nonfood applications. This article describes the formation of high amylose corn (HAC)‐ or waxy corn starch (WC)‐CFA AIC containing 0%, 2%, 7.5%, and 15% CFA using a continuous thermomechanical extrusion process at 20% feed moisture and a twin‐screw extruder with a unique screw design. The extrusion conditions completely destructure both the HAC and waxy starch granules and the resulting materials are evaluated using SEM, XRD, FT‐IR, FTIR‐m, and TGA. The HAC‐CFA materials are shown to contain AIC having 61 V type helical structure between amylose and the CFA that are confirmed by XRD and IR spectral analysis. By TGA, extruded HAC materials containing 15% CFA are shown to have excess CFA present in addition to formed AIC. In contrast, the WC is shown not to form AIC with the CFA and only trap the CFA within the starch matrix. The understanding gained from this study is helpful to design the processing of starch‐based biopolymers to prepare AIC having improved functional properties for potential commercial applications.","PeriodicalId":501569,"journal":{"name":"Starch","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Starch","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/star.202300228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Starch‐guest molecule amylose inclusion complexes (AIC) are of interest to industry as a means to encapsulate and deliver compounds. Coconut fatty acids (CFA) consist predominantly of medium chain fatty acids having useful food and nonfood applications. This article describes the formation of high amylose corn (HAC)‐ or waxy corn starch (WC)‐CFA AIC containing 0%, 2%, 7.5%, and 15% CFA using a continuous thermomechanical extrusion process at 20% feed moisture and a twin‐screw extruder with a unique screw design. The extrusion conditions completely destructure both the HAC and waxy starch granules and the resulting materials are evaluated using SEM, XRD, FT‐IR, FTIR‐m, and TGA. The HAC‐CFA materials are shown to contain AIC having 61 V type helical structure between amylose and the CFA that are confirmed by XRD and IR spectral analysis. By TGA, extruded HAC materials containing 15% CFA are shown to have excess CFA present in addition to formed AIC. In contrast, the WC is shown not to form AIC with the CFA and only trap the CFA within the starch matrix. The understanding gained from this study is helpful to design the processing of starch‐based biopolymers to prepare AIC having improved functional properties for potential commercial applications.
淀粉-客体分子淀粉包合物(AIC)作为一种封装和输送化合物的手段,受到了工业界的关注。椰子脂肪酸(CFA)主要由中链脂肪酸组成,具有有益的食品和非食品用途。本文介绍了在 20% 的进料水分和具有独特螺杆设计的双螺杆挤压机条件下,采用连续热机械挤压工艺,形成含有 0%、2%、7.5% 和 15%CFA 的高淀粉玉米(HAC)- 或蜡质玉米淀粉(WC)- CFA AIC。挤压条件完全破坏了 HAC 和蜡质淀粉颗粒的结构,并使用扫描电镜、XRD、傅立叶变换红外光谱、傅立叶变换红外光谱-m 和热重分析法对所得材料进行了评估。经 XRD 和红外光谱分析证实,HAC-CFA 材料含有 AIC,淀粉和 CFA 之间具有 61 V 型螺旋结构。通过热重分析表明,含有 15% CFA 的挤压 HAC 材料除了已形成的 AIC 外,还含有过量的 CFA。相反,WC 则不会与 CFA 形成 AIC,只会将 CFA 困在淀粉基质中。这项研究有助于设计淀粉基生物聚合物的加工工艺,从而制备出具有更好功能特性的 AIC,用于潜在的商业应用。