Tiny polyp detection from endoscopic video frames using vision transformers

IF 3.7 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Entong Liu, Bishi He, Darong Zhu, Yuanjiao Chen, Zhe Xu
{"title":"Tiny polyp detection from endoscopic video frames using vision transformers","authors":"Entong Liu, Bishi He, Darong Zhu, Yuanjiao Chen, Zhe Xu","doi":"10.1007/s10044-024-01254-3","DOIUrl":null,"url":null,"abstract":"<p>Deep learning techniques can be effective in helping doctors diagnose gastrointestinal polyps. Currently, processing video frame sequences containing a large amount of spurious noise in polyp detection suffers from elevated recall and mean average precision. Moreover, the mean average precision is also low when the polyp target in the video frame has large-scale variability. Therefore, we propose a tiny polyp detection from endoscopic video frames using Vision Transformers, named TPolyp. The proposed method uses a cross-stage Swin Transformer as a multi-scale feature extractor to extract deep feature representations of data samples, improves the bidirectional sampling feature pyramid, and integrates the prediction heads of multiple channel self-attention mechanisms. This approach focuses more on the feature information of the tiny object detection task than convolutional neural networks and retains relatively deeper semantic information. It additionally improves feature expression and discriminability without increasing the computational complexity. Experimental results show that TPolyp improves detection accuracy by 7%, recall by 7.3%, and average accuracy by 7.5% compared to the YOLOv5 model, and has better tiny object detection in scenarios with blurry artifacts.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"45 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01254-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning techniques can be effective in helping doctors diagnose gastrointestinal polyps. Currently, processing video frame sequences containing a large amount of spurious noise in polyp detection suffers from elevated recall and mean average precision. Moreover, the mean average precision is also low when the polyp target in the video frame has large-scale variability. Therefore, we propose a tiny polyp detection from endoscopic video frames using Vision Transformers, named TPolyp. The proposed method uses a cross-stage Swin Transformer as a multi-scale feature extractor to extract deep feature representations of data samples, improves the bidirectional sampling feature pyramid, and integrates the prediction heads of multiple channel self-attention mechanisms. This approach focuses more on the feature information of the tiny object detection task than convolutional neural networks and retains relatively deeper semantic information. It additionally improves feature expression and discriminability without increasing the computational complexity. Experimental results show that TPolyp improves detection accuracy by 7%, recall by 7.3%, and average accuracy by 7.5% compared to the YOLOv5 model, and has better tiny object detection in scenarios with blurry artifacts.

Abstract Image

利用视觉变换器从内窥镜视频帧中检测微小息肉
深度学习技术可有效帮助医生诊断胃肠道息肉。目前,在息肉检测中处理含有大量杂散噪声的视频帧序列时,会出现召回率和平均精度降低的问题。此外,当视频帧中的息肉目标具有大范围变化时,平均精度也很低。因此,我们提出了一种利用视觉变换器从内窥镜视频帧中检测微小息肉的方法,命名为 TPolyp。该方法采用跨级 Swin 变换器作为多尺度特征提取器,提取数据样本的深度特征表征,改进了双向采样特征金字塔,并集成了多通道自注意机制的预测头。与卷积神经网络相比,这种方法更注重微小物体检测任务的特征信息,并保留了相对更深的语义信息。此外,它还在不增加计算复杂度的情况下提高了特征表达和可辨别性。实验结果表明,与 YOLOv5 模型相比,TPolyp 的检测准确率提高了 7%,召回率提高了 7.3%,平均准确率提高了 7.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Analysis and Applications
Pattern Analysis and Applications 工程技术-计算机:人工智能
CiteScore
7.40
自引率
2.60%
发文量
76
审稿时长
13.5 months
期刊介绍: The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信