{"title":"High-recall calibration monitoring for stereo cameras","authors":"Jaroslav Moravec, Radim Šára","doi":"10.1007/s10044-024-01264-1","DOIUrl":null,"url":null,"abstract":"<p>Cameras are the prevalent sensors used for perception in autonomous robotic systems, but their initial calibration may degrade over time due to dynamic factors. This may lead to a failure of downstream tasks, such as simultaneous localization and mapping (SLAM) or object recognition. Hence, a computationally lightweight process that detects the decalibration is of interest. We describe a modification of StOCaMo, an online calibration monitoring procedure for a stereoscopic system. The method uses robust kernel correlation based on epipolar constraints; it validates extrinsic calibration parameters on a single frame with no temporal tracking. In this paper, we present a modified StOCaMo with an improved recall rate on small decalibrations through a confirmation technique based on resampled variance. With fixed parameters learned on a realistic synthetic dataset from CARLA, StOCaMo and its proposed modification were tested on multiple sequences from two real-world datasets: KITTI and EuRoC MAV. The modification improved the recall of StOCaMo by 25 % (to 91 % and 82 %, respectively), and the accuracy by 12 % (to 94.7 % and 87.5 %, respectively), while labeling at most one-third of the input data as uninformative. The upgraded method achieved the rank correlation between StOCaMo V-index and downstream SLAM error of 0.78 (Spearman).</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"3 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01264-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cameras are the prevalent sensors used for perception in autonomous robotic systems, but their initial calibration may degrade over time due to dynamic factors. This may lead to a failure of downstream tasks, such as simultaneous localization and mapping (SLAM) or object recognition. Hence, a computationally lightweight process that detects the decalibration is of interest. We describe a modification of StOCaMo, an online calibration monitoring procedure for a stereoscopic system. The method uses robust kernel correlation based on epipolar constraints; it validates extrinsic calibration parameters on a single frame with no temporal tracking. In this paper, we present a modified StOCaMo with an improved recall rate on small decalibrations through a confirmation technique based on resampled variance. With fixed parameters learned on a realistic synthetic dataset from CARLA, StOCaMo and its proposed modification were tested on multiple sequences from two real-world datasets: KITTI and EuRoC MAV. The modification improved the recall of StOCaMo by 25 % (to 91 % and 82 %, respectively), and the accuracy by 12 % (to 94.7 % and 87.5 %, respectively), while labeling at most one-third of the input data as uninformative. The upgraded method achieved the rank correlation between StOCaMo V-index and downstream SLAM error of 0.78 (Spearman).
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.