Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO2 nanofluid

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS
Bin Yang, Yuan Zhi, Yao Qi, Lingkang Xie, Xiaohui Yu
{"title":"Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO2 nanofluid","authors":"Bin Yang, Yuan Zhi, Yao Qi, Lingkang Xie, Xiaohui Yu","doi":"10.1007/s11708-024-0935-7","DOIUrl":null,"url":null,"abstract":"<p>Spectral beam split is attracting more attention thanks to the efficient use of whole spectrum solar energy and the cogenerative supply for electricity and heat. Nanofluids can selectively absorb and deliver specific solar spectra, making various nanofluids ideal for potential use in hybrid photovoltaic/thermal (PV/T) systems for solar spectrum separation. Clarifying the effects of design parameters is extremely beneficial for optimal frequency divider design and system performance enhancement. The water-based SiO<sub>2</sub> nanofluid with excellent thermal and absorption properties was proposed as the spectral beam splitter in the present study, to improve the efficiency of a hybrid PV/T system. Moreover, a dual optical path method was applied to get its spectral transimissivity and analyze the impact of its concentration and optical path on its optical properties. Furthermore, a PV and photothermal model of the presented system was built to investigate the system performance. The result indicates that the transimissivity of the nanofluids to solar radiation gradually decreases with increasing SiO<sub>2</sub> nanofluid concentration and optical path. The higher nanofluid concentration leads to a lower electrical conversion efficiency, a higher thermal conversion efficiency, and an overall system efficiency. Considering the overall efficiency and economic cost, the optimal SiO<sub>2</sub> nanofluid concentration is 0.10 wt.% (wt.%, mass fraction). Increasing the optical path (from 0 to 30 mm) results in a 60.43% reduction in electrical conversion efficiency and a 50.84% increase in overall system efficiency. However, the overall system efficiency rises sharply as the optical path increases in the 0–10 mm range, and then slowly at the optical path of 10–30 mm. Additionally, the overall system efficiency increases first and then drops upon increasing the focusing ratio. The maximum efficiency is 51.93% at the focusing ratio of 3.</p>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"31 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11708-024-0935-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral beam split is attracting more attention thanks to the efficient use of whole spectrum solar energy and the cogenerative supply for electricity and heat. Nanofluids can selectively absorb and deliver specific solar spectra, making various nanofluids ideal for potential use in hybrid photovoltaic/thermal (PV/T) systems for solar spectrum separation. Clarifying the effects of design parameters is extremely beneficial for optimal frequency divider design and system performance enhancement. The water-based SiO2 nanofluid with excellent thermal and absorption properties was proposed as the spectral beam splitter in the present study, to improve the efficiency of a hybrid PV/T system. Moreover, a dual optical path method was applied to get its spectral transimissivity and analyze the impact of its concentration and optical path on its optical properties. Furthermore, a PV and photothermal model of the presented system was built to investigate the system performance. The result indicates that the transimissivity of the nanofluids to solar radiation gradually decreases with increasing SiO2 nanofluid concentration and optical path. The higher nanofluid concentration leads to a lower electrical conversion efficiency, a higher thermal conversion efficiency, and an overall system efficiency. Considering the overall efficiency and economic cost, the optimal SiO2 nanofluid concentration is 0.10 wt.% (wt.%, mass fraction). Increasing the optical path (from 0 to 30 mm) results in a 60.43% reduction in electrical conversion efficiency and a 50.84% increase in overall system efficiency. However, the overall system efficiency rises sharply as the optical path increases in the 0–10 mm range, and then slowly at the optical path of 10–30 mm. Additionally, the overall system efficiency increases first and then drops upon increasing the focusing ratio. The maximum efficiency is 51.93% at the focusing ratio of 3.

推进采用水基二氧化硅纳米流体的光谱分束混合光伏/发电系统的性能评估
由于全光谱太阳能的高效利用以及电力和热能的联产供应,光谱光束分离正受到越来越多的关注。纳米流体可以选择性地吸收和传递特定的太阳光谱,这使得各种纳米流体成为光伏/热混合(PV/T)系统中用于太阳光谱分离的理想选择。明确设计参数的影响对于优化分频器设计和提高系统性能极为有益。本研究提出了具有优异热性能和吸收性能的水基二氧化硅纳米流体作为光谱分束器,以提高光伏/热混合系统的效率。此外,还应用双光路方法获得了其光谱透射率,并分析了其浓度和光路对其光学特性的影响。此外,还建立了该系统的光伏和光热模型,以研究系统性能。结果表明,纳米流体对太阳辐射的透射率随着二氧化硅纳米流体浓度和光路的增加而逐渐降低。纳米流体浓度越高,电转换效率越低,热转换效率越高,系统整体效率越高。考虑到整体效率和经济成本,最佳 SiO2 纳米流体浓度为 0.10 wt.%(重量百分比,质量分数)。增加光路(从 0 毫米增加到 30 毫米)可使电转换效率降低 60.43%,系统整体效率提高 50.84%。不过,在 0-10 毫米的范围内,随着光路的增加,系统整体效率会急剧上升,而在光路为 10-30 毫米时,系统整体效率会缓慢上升。此外,随着聚焦比的增加,系统整体效率先上升后下降。当聚焦比为 3 时,系统效率最高可达 51.93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信