{"title":"Minimizing usage of silane coupling agent for amine-grafted mesoporous silica CO2 adsorbent","authors":"Jinrui Li, Nao Tsunoji, Rajesh Kumar, Ndaru Candra Sukmana, Masahiro Sadakane","doi":"10.1007/s10934-024-01596-7","DOIUrl":null,"url":null,"abstract":"<div><p>Amine-grafted adsorbents are promising CO<sub>2</sub> adsorbents; however, the excessive addition of an amino silane coupling agent during their synthesis increases their production cost. Thus, using low amounts of silane, we synthesized 3-aminopropyltrimethoxysilane (APTMS)-grafted SBA-15 mesoporous silica and evaluated its CO<sub>2</sub> adsorption performance. APTMS-grafted SBA-15 samples were prepared using either impregnation or heating–filtration method (grafting). The obtained samples were characterized by X-ray diffraction spectroscopy, transmission electron microscopy, N<sub>2</sub> adsorption/desorption, scanning electron microscopy, magic-angle spinning nuclear magnetic resonance, and elemental analysis. The results revealed that the micropores of SBA-15 were preferentially blocked, and APTMS increasingly occupied the mesopores with increasing amine loading. The CO<sub>2</sub>-adsorption performance of the adsorbents was measured by thermogravimetric analysis under dry conditions. Both synthesis methods achieved high amine immobilization efficiency (78.3–92.2%), as estimated from the amount of silane coupling agents used in the synthesis and that immobilized on the support. The adsorbents prepared by the two methods adsorbed similar amounts of CO<sub>2</sub> of approximately 0.5 mmol g<sup>− 1</sup> in 400 ppm CO<sub>2</sub> and ~ 1.0 mmol g<sup>− 1</sup> in 5 vol% CO<sub>2</sub>. The adsorption amounts attained in this study are comparable to those of previously reported silane-coupling-agent-modified adsorbents that were prepared with more silane. In contrast, the adsorption rate of the samples was affected by the synthesis method, even with similar amine loadings. Nonetheless, the results revealed that even with a low amount of the silane coupling agent, high-performance amine-grafted CO<sub>2</sub> adsorbents could be synthesized.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1289 - 1304"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01596-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01596-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Amine-grafted adsorbents are promising CO2 adsorbents; however, the excessive addition of an amino silane coupling agent during their synthesis increases their production cost. Thus, using low amounts of silane, we synthesized 3-aminopropyltrimethoxysilane (APTMS)-grafted SBA-15 mesoporous silica and evaluated its CO2 adsorption performance. APTMS-grafted SBA-15 samples were prepared using either impregnation or heating–filtration method (grafting). The obtained samples were characterized by X-ray diffraction spectroscopy, transmission electron microscopy, N2 adsorption/desorption, scanning electron microscopy, magic-angle spinning nuclear magnetic resonance, and elemental analysis. The results revealed that the micropores of SBA-15 were preferentially blocked, and APTMS increasingly occupied the mesopores with increasing amine loading. The CO2-adsorption performance of the adsorbents was measured by thermogravimetric analysis under dry conditions. Both synthesis methods achieved high amine immobilization efficiency (78.3–92.2%), as estimated from the amount of silane coupling agents used in the synthesis and that immobilized on the support. The adsorbents prepared by the two methods adsorbed similar amounts of CO2 of approximately 0.5 mmol g− 1 in 400 ppm CO2 and ~ 1.0 mmol g− 1 in 5 vol% CO2. The adsorption amounts attained in this study are comparable to those of previously reported silane-coupling-agent-modified adsorbents that were prepared with more silane. In contrast, the adsorption rate of the samples was affected by the synthesis method, even with similar amine loadings. Nonetheless, the results revealed that even with a low amount of the silane coupling agent, high-performance amine-grafted CO2 adsorbents could be synthesized.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.