SBA-15 with short-sized channels modified with Fe2O3 nanoparticles. A novel approximation of an efficient adsorbent for As removal in contaminated water
Viviana Palos-Barba, Rufino Nava Mendoza, Beatriz M. Millán-Malo, Manuel Aguilar-Franco, Carmen Peza-Ledesma, Eric M. Rivera-Muñoz
{"title":"SBA-15 with short-sized channels modified with Fe2O3 nanoparticles. A novel approximation of an efficient adsorbent for As removal in contaminated water","authors":"Viviana Palos-Barba, Rufino Nava Mendoza, Beatriz M. Millán-Malo, Manuel Aguilar-Franco, Carmen Peza-Ledesma, Eric M. Rivera-Muñoz","doi":"10.1007/s10934-024-01589-6","DOIUrl":null,"url":null,"abstract":"<div><p>The urgent need for technologies to ensure health standards, as per the Sustainable Development Goals established by the United Nations, has prompted research into addressing human health problems associated with chemical contaminants in air, water, and soil. Heavy metals, particularly arsenic, pose significant health risks, with millions of people worldwide exposed to concentrations exceeding recommended limits. Nanostructured materials, including ordered mesoporous substrates such as SBA-15, have shown promise for arsenic removal due to their high surface area and pore characteristics. This study aimed to synthesize a silica mesoporous material with reduced pore channel length to enhance surface area and active sites, thereby improving arsenic removal efficiency. By exploring various surfactant-to-silica precursor ratios, a suitable value was identified to promote the production of shortened SBA-15 particles. These shortened pore channels facilitated the dispersion of iron oxide nanoparticles (Fe<sub>2</sub>O<sub>3</sub>) on the SBA-15 surface, resulting in an effective adsorbent that achieved over 95% arsenic removal. The combination of the modified SBA-15 substrate and Fe<sub>2</sub>O<sub>3</sub> nanoparticles demonstrated high efficiency in arsenic removal from aqueous effluents, offering a promising solution to address water pollution and associated health risks.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1387 - 1400"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01589-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01589-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The urgent need for technologies to ensure health standards, as per the Sustainable Development Goals established by the United Nations, has prompted research into addressing human health problems associated with chemical contaminants in air, water, and soil. Heavy metals, particularly arsenic, pose significant health risks, with millions of people worldwide exposed to concentrations exceeding recommended limits. Nanostructured materials, including ordered mesoporous substrates such as SBA-15, have shown promise for arsenic removal due to their high surface area and pore characteristics. This study aimed to synthesize a silica mesoporous material with reduced pore channel length to enhance surface area and active sites, thereby improving arsenic removal efficiency. By exploring various surfactant-to-silica precursor ratios, a suitable value was identified to promote the production of shortened SBA-15 particles. These shortened pore channels facilitated the dispersion of iron oxide nanoparticles (Fe2O3) on the SBA-15 surface, resulting in an effective adsorbent that achieved over 95% arsenic removal. The combination of the modified SBA-15 substrate and Fe2O3 nanoparticles demonstrated high efficiency in arsenic removal from aqueous effluents, offering a promising solution to address water pollution and associated health risks.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.