N-Formylation modifies membrane damage associated with PSMα3 interfacial fibrillation†

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Laura Bonnecaze, Katlyn Jumel, Anthony Vial, Lucie Khemtemourian, Cécile Feuillie, Michael Molinari, Sophie Lecomte and Marion Mathelié-Guinlet
{"title":"N-Formylation modifies membrane damage associated with PSMα3 interfacial fibrillation†","authors":"Laura Bonnecaze, Katlyn Jumel, Anthony Vial, Lucie Khemtemourian, Cécile Feuillie, Michael Molinari, Sophie Lecomte and Marion Mathelié-Guinlet","doi":"10.1039/D4NH00088A","DOIUrl":null,"url":null,"abstract":"<p >The virulence of <em>Staphylococcus aureus</em>, a multi-drug resistant pathogen, notably depends on the expression of the phenol soluble modulins α3 (PSMα3) peptides, able to self-assemble into amyloid-like cross-α fibrils. Despite remarkable advances evidencing the crucial, yet insufficient, role of fibrils in PSMα3 cytotoxic activities towards host cells, the relationship between its molecular structures, assembly propensities, and modes of action remains an open intriguing problem. In this study, combining atomic force microscopy (AFM) imaging and infrared spectroscopy, we first demonstrated <em>in vitro</em> that the charge provided by the N-terminal capping of PSMα3 alters its interactions with model membranes of controlled lipid composition without compromising its fibrillation kinetics or morphology. N-formylation eventually dictates PSMα3-membrane binding <em>via</em> electrostatic interactions with the lipid head groups. Furthermore, PSMα3 insertion within the lipid bilayer is favoured by hydrophobic interactions with the lipid acyl chains only in the fluid phase of membranes and not in the gel-like ordered domains. Strikingly, our real-time AFM imaging emphasizes how intermediate protofibrillar entities, formed along PSMα3 self-assembly and promoted at the membrane interface, likely disrupt membrane integrity <em>via</em> peptide accumulation and subsequent membrane thinning in a peptide concentration and lipid-dependent manner. Overall, our multiscale and multimodal approach sheds new light on the key roles of N-formylation and intermediate self-assembling entities, rather than mature fibrils, in dictating deleterious interactions of PSMα3 with membrane lipids, likely underscoring its ultimate cellular toxicity <em>in vivo</em>, and in turn <em>S. aureus</em> pathogenesis.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nh/d4nh00088a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00088a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The virulence of Staphylococcus aureus, a multi-drug resistant pathogen, notably depends on the expression of the phenol soluble modulins α3 (PSMα3) peptides, able to self-assemble into amyloid-like cross-α fibrils. Despite remarkable advances evidencing the crucial, yet insufficient, role of fibrils in PSMα3 cytotoxic activities towards host cells, the relationship between its molecular structures, assembly propensities, and modes of action remains an open intriguing problem. In this study, combining atomic force microscopy (AFM) imaging and infrared spectroscopy, we first demonstrated in vitro that the charge provided by the N-terminal capping of PSMα3 alters its interactions with model membranes of controlled lipid composition without compromising its fibrillation kinetics or morphology. N-formylation eventually dictates PSMα3-membrane binding via electrostatic interactions with the lipid head groups. Furthermore, PSMα3 insertion within the lipid bilayer is favoured by hydrophobic interactions with the lipid acyl chains only in the fluid phase of membranes and not in the gel-like ordered domains. Strikingly, our real-time AFM imaging emphasizes how intermediate protofibrillar entities, formed along PSMα3 self-assembly and promoted at the membrane interface, likely disrupt membrane integrity via peptide accumulation and subsequent membrane thinning in a peptide concentration and lipid-dependent manner. Overall, our multiscale and multimodal approach sheds new light on the key roles of N-formylation and intermediate self-assembling entities, rather than mature fibrils, in dictating deleterious interactions of PSMα3 with membrane lipids, likely underscoring its ultimate cellular toxicity in vivo, and in turn S. aureus pathogenesis.

Abstract Image

N-甲酰化改变与 PSMα3 界面纤维化相关的膜损伤
金黄色葡萄球菌是一种具有多种耐药性的病原体,其毒性主要取决于酚溶性调节蛋白α3(PSMα3)肽的表达,这种肽能够自我组装成淀粉样交叉α纤维。尽管取得了引人注目的进展,证明了纤维在 PSMα3 对宿主细胞的细胞毒性活动中的关键作用,但其分子结构、组装倾向和作用模式之间的关系仍然是一个开放的、引人入胜的问题。在这项研究中,我们结合原子力显微镜(AFM)成像和红外光谱,首次在体外证明了 PSMα3 N 端封端的电荷改变了它与受控脂质组成的模型膜之间的相互作用,而不会影响其纤维化动力学或形态。N-formylation 最终通过与脂质头部基团的静电相互作用决定了 PSMα3 与膜的结合。此外,PSMα3 通过与脂质酰基链的疏水相互作用插入脂质双分子层,但这只发生在膜的流体相中,而不是在凝胶状有序结构域中。令人震惊的是,我们的实时原子力显微镜成像强调了在 PSMα3 自组装过程中形成并在膜界面上促进的中间原纤维实体是如何通过肽积累破坏膜完整性的,以及随后以肽浓度和脂质依赖方式使膜变薄的。总之,我们的多尺度和多模式方法揭示了 N-formylation和中间自组装实体(而不是成熟的纤维)在决定 PSMα3 与特定膜脂质的有害相互作用中的关键作用,这可能突出了其在体内的最终细胞毒性,进而揭示了金黄色葡萄球菌的致病机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信