Hilda Aguayo-Morales, Luis E. Cobos-Puc, Claudia M. Lopez-Badillo, Ernesto Oyervides-Muñoz, Gonzalo Ramírez-García, Jesús A. Claudio-Rizo
{"title":"Collagen-polyurethane-dextran hydrogels enhance wound healing by inhibiting inflammation and promoting collagen fibrillogenesis","authors":"Hilda Aguayo-Morales, Luis E. Cobos-Puc, Claudia M. Lopez-Badillo, Ernesto Oyervides-Muñoz, Gonzalo Ramírez-García, Jesús A. Claudio-Rizo","doi":"10.1002/jbm.a.37724","DOIUrl":null,"url":null,"abstract":"<p>Diabetic foot ulcers are a serious complication of uncontrolled diabetes, emphasizing the need to develop wound healing strategies that are not only effective but also biocompatible, biodegradable, and safe. We aimed to create biomatrices composed of semi-interpenetrated polymer networks of collagen, polyurethane, and dextran, to enhance the wound healing process. The hydrogels were extensively characterized by various analytical techniques, including analysis of their structure, crystallinity, thermal properties, gelation process, reticulation, degradation, cell proliferation, and healing properties, among others. Semi-interpenetrated hydrogels containing dextran at levels of 10%, 20%, and 30% exhibited porous interconnections between collagen fibers and entrapped dextran granules, with a remarkable crosslinking index of up to 94% promoted by hydrogen bonds. These hydrogels showed significant improvements in mechanical properties, swelling, and resistance to proteolytic and hydrolytic degradation. After 24 h, there was a significant increase in the viability of several cell types, including RAW 264.7 cells, human peripheral blood mononuclear cells, and dermal fibroblasts. In addition, these hydrogels demonstrated an increased release of interleukin-10 and transforming growth factor-beta1 while inhibiting the release of monocyte chemotactic protein-1 and tumor necrosis factor-alpha after 72 h. Furthermore, these hydrogels accelerated the wound healing process in diabetic rats after topical application. Notably, the biomaterial with 20% dextran (D20) facilitated wound closure in only 21 days. These results highlight the potential of the D20 hydrogel, which exhibits physicochemical and biological properties that enhance wound healing by inhibiting inflammation and fibrillogenesis while remaining safe for application to the skin.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 10","pages":"1760-1777"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37724","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic foot ulcers are a serious complication of uncontrolled diabetes, emphasizing the need to develop wound healing strategies that are not only effective but also biocompatible, biodegradable, and safe. We aimed to create biomatrices composed of semi-interpenetrated polymer networks of collagen, polyurethane, and dextran, to enhance the wound healing process. The hydrogels were extensively characterized by various analytical techniques, including analysis of their structure, crystallinity, thermal properties, gelation process, reticulation, degradation, cell proliferation, and healing properties, among others. Semi-interpenetrated hydrogels containing dextran at levels of 10%, 20%, and 30% exhibited porous interconnections between collagen fibers and entrapped dextran granules, with a remarkable crosslinking index of up to 94% promoted by hydrogen bonds. These hydrogels showed significant improvements in mechanical properties, swelling, and resistance to proteolytic and hydrolytic degradation. After 24 h, there was a significant increase in the viability of several cell types, including RAW 264.7 cells, human peripheral blood mononuclear cells, and dermal fibroblasts. In addition, these hydrogels demonstrated an increased release of interleukin-10 and transforming growth factor-beta1 while inhibiting the release of monocyte chemotactic protein-1 and tumor necrosis factor-alpha after 72 h. Furthermore, these hydrogels accelerated the wound healing process in diabetic rats after topical application. Notably, the biomaterial with 20% dextran (D20) facilitated wound closure in only 21 days. These results highlight the potential of the D20 hydrogel, which exhibits physicochemical and biological properties that enhance wound healing by inhibiting inflammation and fibrillogenesis while remaining safe for application to the skin.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.