Effects of mycorrhizal symbiosis and Ulva lactuca seaweed extract on growth, carbon/nitrogen metabolism, and antioxidant response in cadmium-stressed sorghum plant

IF 3.4 3区 生物学 Q1 PLANT SCIENCES
Anass Kchikich, Zoulfa Roussi, Azzouz Krid, Nada Nhhala, Abdelhamid Ennoury, Bouchra Benmrid, Ayoub Kounnoun, Mohammed El Maadoudi, Naima Nhiri, Nhiri Mohamed
{"title":"Effects of mycorrhizal symbiosis and Ulva lactuca seaweed extract on growth, carbon/nitrogen metabolism, and antioxidant response in cadmium-stressed sorghum plant","authors":"Anass Kchikich, Zoulfa Roussi, Azzouz Krid, Nada Nhhala, Abdelhamid Ennoury, Bouchra Benmrid, Ayoub Kounnoun, Mohammed El Maadoudi, Naima Nhiri, Nhiri Mohamed","doi":"10.1007/s12298-024-01446-5","DOIUrl":null,"url":null,"abstract":"<p>In our study on the effect of cadmium (Cd) toxicity (200 µM) on the growth of <i>Sorghum bicolor</i> (L.) Moench plants, cultivated with arbuscular mycorrhizal fungi (AMF) (<i>Glomus intraradices</i>) and/or under seaweed treatment (3% <i>Ulva lactuca</i> extract) (<i>U. lactuca</i>), we found that AMF increased the tolerance of sorghum to cadmium stress, either alone or in combination with the seaweed treatment. Morphological parameters were higher in these two culture conditions, with increased chlorophyll content. AMF reduced Cd accumulation in roots and inhibited its translocation to the aerial part, while seaweed treatment alone significantly increased Cd accumulation in leaves and roots without affecting plant growth compared to stressed witnesses. Treatment with AMF and/or <i>U. lactuca</i> attenuated oxidative stress, measured by activation of superoxide dismutase, and resulted in a significant decrease in malondialdehyde and superoxide ions (O<sub>2</sub><sup>−</sup>) in treated plants. Furthermore, it induced significant alterations in carbon and nitrogen metabolic pathways, with a significant increase in the activity of enzymes such as glutamine synthetase, glutamate synthase (GOGAT), glutamate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase and isocitrate dehydrogenase in the leaves of each treated plant. These results confirm that AMF, <i>U. lactuca</i> algae extract and their combination can improve the biochemical parameters of sorghum under Cd stress, through modification of the antioxidant response on one hand, and improved nitrogen absorption and assimilation efficiency on the other.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"1 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01446-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In our study on the effect of cadmium (Cd) toxicity (200 µM) on the growth of Sorghum bicolor (L.) Moench plants, cultivated with arbuscular mycorrhizal fungi (AMF) (Glomus intraradices) and/or under seaweed treatment (3% Ulva lactuca extract) (U. lactuca), we found that AMF increased the tolerance of sorghum to cadmium stress, either alone or in combination with the seaweed treatment. Morphological parameters were higher in these two culture conditions, with increased chlorophyll content. AMF reduced Cd accumulation in roots and inhibited its translocation to the aerial part, while seaweed treatment alone significantly increased Cd accumulation in leaves and roots without affecting plant growth compared to stressed witnesses. Treatment with AMF and/or U. lactuca attenuated oxidative stress, measured by activation of superoxide dismutase, and resulted in a significant decrease in malondialdehyde and superoxide ions (O2) in treated plants. Furthermore, it induced significant alterations in carbon and nitrogen metabolic pathways, with a significant increase in the activity of enzymes such as glutamine synthetase, glutamate synthase (GOGAT), glutamate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase and isocitrate dehydrogenase in the leaves of each treated plant. These results confirm that AMF, U. lactuca algae extract and their combination can improve the biochemical parameters of sorghum under Cd stress, through modification of the antioxidant response on one hand, and improved nitrogen absorption and assimilation efficiency on the other.

Abstract Image

菌根共生和海藻提取物对镉胁迫高粱植物的生长、碳氮代谢和抗氧化反应的影响
我们在研究镉(Cd)毒性(200 µM)对高粱(Sorghum bicolor (L.) Moench)植株生长的影响时,发现无论是单独还是与海藻处理相结合,丛枝菌根真菌(AMF)(Glomus intraradices)和/或海藻处理(3%莼菜提取物)(U. lactuca)都能提高高粱对镉胁迫的耐受性。在这两种培养条件下,高粱的形态参数更高,叶绿素含量增加。AMF 可减少镉在根部的积累并抑制镉向气生部分的转移,而与受胁迫的见证物相比,单独使用海藻处理可显著增加镉在叶片和根部的积累,但不会影响植物的生长。用 AMF 和/或 U. lactuca 处理可减轻氧化应激(通过激活超氧化物歧化酶来测量),并使处理植物中的丙二醛和超氧离子(O2-)显著减少。此外,它还诱导碳和氮代谢途径发生重大变化,在每种处理过的植物叶片中,谷氨酰胺合成酶、谷氨酸合成酶(GOGAT)、谷氨酸脱氢酶、磷酸烯醇丙酮酸羧化酶、天门冬氨酸氨基转移酶和异柠檬酸脱氢酶等酶的活性都显著增加。这些结果证实,AMF、U. lactuca 藻类提取物及其组合一方面可以通过改变抗氧化反应改善镉胁迫下高粱的生化指标,另一方面可以改善氮的吸收和同化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信