Stability of isometric immersions of hypersurfaces

IF 1.2 2区 数学 Q1 MATHEMATICS
Itai Alpern, Raz Kupferman, Cy Maor
{"title":"Stability of isometric immersions of hypersurfaces","authors":"Itai Alpern, Raz Kupferman, Cy Maor","doi":"10.1017/fms.2024.30","DOIUrl":null,"url":null,"abstract":"<p>We prove a stability result of isometric immersions of hypersurfaces in Riemannian manifolds, with respect to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328015647453-0017:S2050509424000306:S2050509424000306_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$L^p$</span></span></img></span></span>-perturbations of their fundamental forms: For a manifold <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328015647453-0017:S2050509424000306:S2050509424000306_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal M}^d$</span></span></img></span></span> endowed with a reference metric and a reference shape operator, we show that a sequence of immersions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328015647453-0017:S2050509424000306:S2050509424000306_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f_n:{\\mathcal M}^d\\to {\\mathcal N}^{d+1}$</span></span></img></span></span>, whose pullback metrics and shape operators are arbitrary close in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328015647453-0017:S2050509424000306:S2050509424000306_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$L^p$</span></span></img></span></span> to the reference ones, converge to an isometric immersion having the reference shape operator. This result is motivated by elasticity theory and generalizes a previous result [AKM22] to a general target manifold <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328015647453-0017:S2050509424000306:S2050509424000306_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal N}$</span></span></img></span></span>, removing a constant curvature assumption. The method of proof differs from that in [AKM22]: it extends a Young measure approach that was used in codimension-0 stability results, together with an appropriate relaxation of the energy and a regularity result for immersions satisfying given fundamental forms. In addition, we prove a related quantitative (rather than asymptotic) stability result in the case of Euclidean target, similar to [CMM19] but with no a priori assumed bounds.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.30","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a stability result of isometric immersions of hypersurfaces in Riemannian manifolds, with respect to Abstract Image$L^p$-perturbations of their fundamental forms: For a manifold Abstract Image${\mathcal M}^d$ endowed with a reference metric and a reference shape operator, we show that a sequence of immersions Abstract Image$f_n:{\mathcal M}^d\to {\mathcal N}^{d+1}$, whose pullback metrics and shape operators are arbitrary close in Abstract Image$L^p$ to the reference ones, converge to an isometric immersion having the reference shape operator. This result is motivated by elasticity theory and generalizes a previous result [AKM22] to a general target manifold Abstract Image${\mathcal N}$, removing a constant curvature assumption. The method of proof differs from that in [AKM22]: it extends a Young measure approach that was used in codimension-0 stability results, together with an appropriate relaxation of the energy and a regularity result for immersions satisfying given fundamental forms. In addition, we prove a related quantitative (rather than asymptotic) stability result in the case of Euclidean target, similar to [CMM19] but with no a priori assumed bounds.

超曲面等距浸入的稳定性
我们证明了黎曼流形中超曲面的等距浸入的稳定性结果,这与它们的基本形式的$L^p$扰动有关:对于具有参考度量和参考形状算子的流形 ${mathcal M}^d$,我们证明了一连串的浸入 $f_n:{mathcal M}^d\to {\mathcal N}^{d+1}$(其回拉度量和形状算子在 $L^p$ 中任意接近于参考度量和形状算子)会收敛到具有参考形状算子的等距浸入。这一结果是由弹性理论激发的,并将之前的结果[AKM22]推广到一般目标流形 ${mathcal N}$,去掉了恒曲率假设。证明方法与 [AKM22] 中的方法不同:它扩展了在标度为 0 的稳定性结果中使用的杨度量方法,以及能量的适当松弛和满足给定基本形式的浸入的正则性结果。此外,我们还证明了欧几里得目标情况下的相关定量(而非渐近)稳定性结果,类似于 [CMM19],但没有先验假定的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信