Mohammad-Sadegh Karbasforooshan, Mohammad Monfared
{"title":"Grid voltage sensorless control of a single-phase shunt hybrid active power filter","authors":"Mohammad-Sadegh Karbasforooshan, Mohammad Monfared","doi":"10.1049/pel2.12689","DOIUrl":null,"url":null,"abstract":"<p>Here, a grid voltage sensorless control of an LCL-filtered LC-tuned single-phase shunt hybrid active power filter (HAPF) is proposed, which offers high-quality harmonic current compensation with low hardware requirements. An estimation algorithm replaces the grid voltage sensor and associated circuitry to reduce the size and cost. This paper presents a straightforward and accurate modelling of the suggested structure and its filtering characteristics, followed by a comprehensive yet simple parameter design procedure. An inherent damping technique that uses digital delay rather than virtual or physical damping resistors eliminates the need for additional sensors or extra power losses. As part of the design, a high-quality reference current is generated for the filter, which is then effectively tracked using a proportional controller with sufficient bandwidth and stability margin. An experimental prototype is implemented to verify the theoretical results, and several steady-state and transient waveforms are reported to demonstrate the superior performance of the HAPF.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12689","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12689","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Here, a grid voltage sensorless control of an LCL-filtered LC-tuned single-phase shunt hybrid active power filter (HAPF) is proposed, which offers high-quality harmonic current compensation with low hardware requirements. An estimation algorithm replaces the grid voltage sensor and associated circuitry to reduce the size and cost. This paper presents a straightforward and accurate modelling of the suggested structure and its filtering characteristics, followed by a comprehensive yet simple parameter design procedure. An inherent damping technique that uses digital delay rather than virtual or physical damping resistors eliminates the need for additional sensors or extra power losses. As part of the design, a high-quality reference current is generated for the filter, which is then effectively tracked using a proportional controller with sufficient bandwidth and stability margin. An experimental prototype is implemented to verify the theoretical results, and several steady-state and transient waveforms are reported to demonstrate the superior performance of the HAPF.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.