Extensions of the colorful Helly theorem for d-collapsible and d-Leray complexes

IF 1.2 2区 数学 Q1 MATHEMATICS
Minki Kim, Alan Lew
{"title":"Extensions of the colorful Helly theorem for d-collapsible and d-Leray complexes","authors":"Minki Kim, Alan Lew","doi":"10.1017/fms.2024.23","DOIUrl":null,"url":null,"abstract":"<p>We present extensions of the colorful Helly theorem for <span>d</span>-collapsible and <span>d</span>-Leray complexes, providing a common generalization to the matroidal versions of the theorem due to Kalai and Meshulam, the ‘very colorful’ Helly theorem introduced by Arocha, Bárány, Bracho, Fabila and Montejano and the ‘semi-intersecting’ colorful Helly theorem proved by Montejano and Karasev.</p><p>As an application, we obtain the following extension of Tverberg’s theorem: Let <span>A</span> be a finite set of points in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328020016659-0471:S2050509424000239:S2050509424000239_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb R}^d$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328020016659-0471:S2050509424000239:S2050509424000239_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$|A|&gt;(r-1)(d+1)$</span></span></img></span></span>. Then, there exist a partition <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328020016659-0471:S2050509424000239:S2050509424000239_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$A_1,\\ldots ,A_r$</span></span></img></span></span> of <span>A</span> and a subset <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328020016659-0471:S2050509424000239:S2050509424000239_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$B\\subset A$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328020016659-0471:S2050509424000239:S2050509424000239_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(r-1)(d+1)$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328020016659-0471:S2050509424000239:S2050509424000239_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\cap _{i=1}^r \\operatorname {\\mathrm {\\text {conv}}}( (B\\cup \\{p\\})\\cap A_i)\\neq \\emptyset $</span></span></img></span></span> for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328020016659-0471:S2050509424000239:S2050509424000239_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p\\in A\\setminus B$</span></span></img></span></span>. That is, we obtain a partition of <span>A</span> into <span>r</span> parts that remains a Tverberg partition even after removing all but one arbitrary point from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328020016659-0471:S2050509424000239:S2050509424000239_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$A\\setminus B$</span></span></img></span></span>.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.23","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present extensions of the colorful Helly theorem for d-collapsible and d-Leray complexes, providing a common generalization to the matroidal versions of the theorem due to Kalai and Meshulam, the ‘very colorful’ Helly theorem introduced by Arocha, Bárány, Bracho, Fabila and Montejano and the ‘semi-intersecting’ colorful Helly theorem proved by Montejano and Karasev.

As an application, we obtain the following extension of Tverberg’s theorem: Let A be a finite set of points in Abstract Image${\mathbb R}^d$ with Abstract Image$|A|>(r-1)(d+1)$. Then, there exist a partition Abstract Image$A_1,\ldots ,A_r$ of A and a subset Abstract Image$B\subset A$ of size Abstract Image$(r-1)(d+1)$ such that Abstract Image$\cap _{i=1}^r \operatorname {\mathrm {\text {conv}}}( (B\cup \{p\})\cap A_i)\neq \emptyset $ for all Abstract Image$p\in A\setminus B$. That is, we obtain a partition of A into r parts that remains a Tverberg partition even after removing all but one arbitrary point from Abstract Image$A\setminus B$.

多彩海利定理对 d 可折叠复合物和 d 勒雷复合物的扩展
我们提出了多彩海利定理对于 d-collapsible 和 d-Leray 复合物的扩展,为 Kalai 和 Meshulam 提出的矩阵版本定理、Arocha、Bárány、Bracho、Fabila 和 Montejano 提出的 "非常多彩 "海利定理以及 Montejano 和 Karasev 证明的 "半相交 "多彩海利定理提供了共同的概括:设 A 是${\mathbb R}^d$ 中的有限点集,其中$|A|>(r-1)(d+1)$。那么,存在 A 的一个分区 $A_1,\ldots ,A_r$ 和一个大小为 $(r-1)(d+1)$ 的子集 $B\subset A$,使得 $cap _{i=1}^r \operatorname {\mathrm {\text {conv}}( (B\cup \{p\})\cap A_i)\neq \emptyset $ 适用于 Aset 中的所有 $p\minus B$。也就是说,我们得到了一个将 A 分割成 r 部分的分割,即使从 $A\setminus B$ 中除去一个任意点,这个分割仍然是 Tverberg 分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信