An extension of the stochastic sewing lemma and applications to fractional stochastic calculus

IF 1.2 2区 数学 Q1 MATHEMATICS
Toyomu Matsuda, Nicolas Perkowski
{"title":"An extension of the stochastic sewing lemma and applications to fractional stochastic calculus","authors":"Toyomu Matsuda, Nicolas Perkowski","doi":"10.1017/fms.2024.32","DOIUrl":null,"url":null,"abstract":"We give an extension of Lê’s stochastic sewing lemma. The stochastic sewing lemma proves convergence in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline1.png\" /> <jats:tex-math> $L_m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of Riemann type sums <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline2.png\" /> <jats:tex-math> $\\sum _{[s,t] \\in \\pi } A_{s,t}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for an adapted two-parameter stochastic process <jats:italic>A</jats:italic>, under certain conditions on the moments of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline3.png\" /> <jats:tex-math> $A_{s,t}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and of conditional expectations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline4.png\" /> <jats:tex-math> $A_{s,t}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline5.png\" /> <jats:tex-math> $\\mathcal F_s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our extension replaces the conditional expectation given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline6.png\" /> <jats:tex-math> $\\mathcal F_s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by that given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline7.png\" /> <jats:tex-math> $\\mathcal F_v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline8.png\" /> <jats:tex-math> $v&lt;s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and it allows to make use of asymptotic decorrelation properties between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline9.png\" /> <jats:tex-math> $A_{s,t}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline10.png\" /> <jats:tex-math> $\\mathcal F_v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by including a singularity in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050942400032X_inline11.png\" /> <jats:tex-math> $(s-v)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide three applications for which Lê’s stochastic sewing lemma seems to be insufficient. The first is to prove the convergence of Itô or Stratonovich approximations of stochastic integrals along fractional Brownian motions under low regularity assumptions. The second is to obtain new representations of local times of fractional Brownian motions via discretization. The third is to improve a regularity assumption on the diffusion coefficient of a stochastic differential equation driven by a fractional Brownian motion for pathwise uniqueness and strong existence.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.32","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give an extension of Lê’s stochastic sewing lemma. The stochastic sewing lemma proves convergence in $L_m$ of Riemann type sums $\sum _{[s,t] \in \pi } A_{s,t}$ for an adapted two-parameter stochastic process A, under certain conditions on the moments of $A_{s,t}$ and of conditional expectations of $A_{s,t}$ given $\mathcal F_s$ . Our extension replaces the conditional expectation given $\mathcal F_s$ by that given $\mathcal F_v$ for $v<s$ , and it allows to make use of asymptotic decorrelation properties between $A_{s,t}$ and $\mathcal F_v$ by including a singularity in $(s-v)$ . We provide three applications for which Lê’s stochastic sewing lemma seems to be insufficient. The first is to prove the convergence of Itô or Stratonovich approximations of stochastic integrals along fractional Brownian motions under low regularity assumptions. The second is to obtain new representations of local times of fractional Brownian motions via discretization. The third is to improve a regularity assumption on the diffusion coefficient of a stochastic differential equation driven by a fractional Brownian motion for pathwise uniqueness and strong existence.
随机缝合两难的扩展及其在分数随机微积分中的应用
我们给出了 Lê 随机缝合两难的扩展。随机缝合定理证明了黎曼型和 $\sum _{[s,t] \in \pi }$ 的收敛性。在给定 $\mathcal F_s$ 的 $A_{s,t}$ 的矩和 $A_{s,t}$ 的条件期望的某些条件下,对于一个经过调整的双参数随机过程 A,A_{s,t}$ 。我们的扩展将给定 $v<s$ 的条件期望$\mathcal F_s$ 替换为给定 $v<s$ 的条件期望$\mathcal F_v$ ,并且通过在 $(s-v)$ 中加入奇异性,可以利用 $A_{s,t}$ 和 $\mathcal F_v$ 之间的渐近相关性。我们提供了三个应用,对于这些应用,Lê 的随机缝合lemma 似乎是不够的。首先是证明在低正则性假设下,沿分数布朗运动的随机积分的伊托或斯特拉托诺维奇近似的收敛性。第二是通过离散化获得分数布朗运动局部时间的新表示。第三是改进分数布朗运动驱动的随机微分方程扩散系数的正则性假设,以实现路径唯一性和强存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信