{"title":"Effect of incident angle of electromagnetic radiation on the electronic and thermoelectric properties of POPGraphene nanoribbons","authors":"Mobina Ardyani, Seyed Ahmad Ketabi, Reza Kalami","doi":"10.1007/s10825-024-02158-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we theoretically investigate the influence of electromagnetic radiation on the electronic and thermoelectric properties of Penta-Octa-Penta Graphene (POPGraphene) nanoribbons. Specifically, we study the effects of varying the incident angle (0–90 degrees) of radiation on the density of states, transmission function, Seebeck coefficient, and electronic figure of merit (<i>ZT</i><sub><i>e</i></sub>) of the nanoribbons. Our results demonstrate that the electronic properties are highly dependent on radiation conditions due to their influence on electron transport. We find that the density of states and transmission function exhibit distinct radiation angle-dependent behaviors that highlight the role of the radiation's electric field orientation. Importantly, the <i>ZT</i><sub><i>e</i></sub> shows significant modulation with the incident angle, achieving optimized values up to 0.275. These findings provide insights into controlling the electronic and thermoelectric properties of POPGraphene nanoribbons using electromagnetic radiation. Our work underscores opportunities for developing Graphene-based nanophotonic devices with enhanced performance through all-optical means. The demonstrated tunability via irradiation paves the way for potential applications such as optical switches, sensors, and next-generation optoelectronics using POPGraphene nanoribbons.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"647 - 660"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02158-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we theoretically investigate the influence of electromagnetic radiation on the electronic and thermoelectric properties of Penta-Octa-Penta Graphene (POPGraphene) nanoribbons. Specifically, we study the effects of varying the incident angle (0–90 degrees) of radiation on the density of states, transmission function, Seebeck coefficient, and electronic figure of merit (ZTe) of the nanoribbons. Our results demonstrate that the electronic properties are highly dependent on radiation conditions due to their influence on electron transport. We find that the density of states and transmission function exhibit distinct radiation angle-dependent behaviors that highlight the role of the radiation's electric field orientation. Importantly, the ZTe shows significant modulation with the incident angle, achieving optimized values up to 0.275. These findings provide insights into controlling the electronic and thermoelectric properties of POPGraphene nanoribbons using electromagnetic radiation. Our work underscores opportunities for developing Graphene-based nanophotonic devices with enhanced performance through all-optical means. The demonstrated tunability via irradiation paves the way for potential applications such as optical switches, sensors, and next-generation optoelectronics using POPGraphene nanoribbons.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.