Manar A. Kandeil, Hoda K. Salem, Samia H. Eissa, Sama S. Hassan, Abdelhamid M. El-Sawy
{"title":"Reproductive performance of freshwater snail, Helisoma duryi under the effect of bulk and nano zinc oxide","authors":"Manar A. Kandeil, Hoda K. Salem, Samia H. Eissa, Sama S. Hassan, Abdelhamid M. El-Sawy","doi":"10.1002/jez.2816","DOIUrl":null,"url":null,"abstract":"<p>Nanotechnology has been used to apply nanoparticle essential elements to enhance the ability of animals to absorb these elements and consequently improve their reproductive performance. High concentrations of nanoparticles (NPs) can directly harm a range of aquatic life forms, ultimately contributing to a decline in biodiversity. <i>Helisoma duryi</i> snails are a good model for studying the toxicological effects of bulk zinc oxide (ZnO-BPs) and nano zinc oxide (ZnO-NPs) on freshwater gastropods. This study aimed to compare the toxic effects of ZnO-BPs and ZnO-NPs on <i>H. duryi</i> snails and explore how waterborne and dietary exposure influenced the reproductive performance of this snail. ZnO-BPs and ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder (XRD). This study revealed that the size of ZnO-BPs and ZnO-NPs were 154 nm and 11–31 nm, respectively. The results showed that exposure of adult snails to sub-lethal concentrations of both ZnO forms (bulk and nano) for 24 h/week for 4 weeks markedly changed their reproductive performance in a concentration-dependent manner, where fecundity was negatively affected by high concentrations. It was concluded that dietary exposure to the lowest tested concentration of ZnO-NPs (1 ppm) has a positive effect as the number of eggs and egg masses/snails increased and the incubation period decreased. Also, poly-vitelline eggs (The formation of twins) were observed. ZnO-NPs at low concentrations positively affect the reproductive performance of snails, especially after dietary exposure. The results revealed that 1 ppm ZnO-NPs could be supplementary provided to snails to improve their fertility, reduce the developmental time course, increase hatchability percentage, and produce poly-vitelline eggs.</p>","PeriodicalId":15711,"journal":{"name":"Journal of experimental zoology. Part A, Ecological and integrative physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part A, Ecological and integrative physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2816","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotechnology has been used to apply nanoparticle essential elements to enhance the ability of animals to absorb these elements and consequently improve their reproductive performance. High concentrations of nanoparticles (NPs) can directly harm a range of aquatic life forms, ultimately contributing to a decline in biodiversity. Helisoma duryi snails are a good model for studying the toxicological effects of bulk zinc oxide (ZnO-BPs) and nano zinc oxide (ZnO-NPs) on freshwater gastropods. This study aimed to compare the toxic effects of ZnO-BPs and ZnO-NPs on H. duryi snails and explore how waterborne and dietary exposure influenced the reproductive performance of this snail. ZnO-BPs and ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray powder (XRD). This study revealed that the size of ZnO-BPs and ZnO-NPs were 154 nm and 11–31 nm, respectively. The results showed that exposure of adult snails to sub-lethal concentrations of both ZnO forms (bulk and nano) for 24 h/week for 4 weeks markedly changed their reproductive performance in a concentration-dependent manner, where fecundity was negatively affected by high concentrations. It was concluded that dietary exposure to the lowest tested concentration of ZnO-NPs (1 ppm) has a positive effect as the number of eggs and egg masses/snails increased and the incubation period decreased. Also, poly-vitelline eggs (The formation of twins) were observed. ZnO-NPs at low concentrations positively affect the reproductive performance of snails, especially after dietary exposure. The results revealed that 1 ppm ZnO-NPs could be supplementary provided to snails to improve their fertility, reduce the developmental time course, increase hatchability percentage, and produce poly-vitelline eggs.
期刊介绍:
The Journal of Experimental Zoology – A publishes articles at the interface between Development, Physiology, Ecology and Evolution. Contributions that help to reveal how molecular, functional and ecological variation relate to one another are particularly welcome. The Journal publishes original research in the form of rapid communications or regular research articles, as well as perspectives and reviews on topics pertaining to the scope of the Journal. Acceptable articles are limited to studies on animals.